用于可再生能源系统的集成四端口全桥转换器与DMPPT

Hongfei Wu, K. Sun, Zihu Zhou, Y. Xing
{"title":"用于可再生能源系统的集成四端口全桥转换器与DMPPT","authors":"Hongfei Wu, K. Sun, Zihu Zhou, Y. Xing","doi":"10.1109/PEDG.2012.6254107","DOIUrl":null,"url":null,"abstract":"In order to involve multiple different renewable energy sources and balance power flow, a four-port full-bridge converter (FPFBC) with distributed maximum power point tracking (DMPPT) is proposed for renewable power systems. This converter, featuring two input ports, one bidirectional port and one isolated output port, is derived by integrating two Buck-Boost converters and a full-bridge converter. The switching legs are shared by the Buck/Boost converter and full-bride converter. Hence, single stage conversion between any two of the ports is achieved. As a result, high power density and high efficiency can be guaranteed. DMPPT is realized on the two input ports connecting to different renewable sources, which ensures maximum renewable energy harvest. A pulse-width modulation plus phase angle shift control scheme and a power control strategy are presented for the FPFBC to implement the power management of the four ports. The operation modes and principles of the proposed converter, along with the design considerations, are discussed in detail. Simulation and experimental results verify the feasibility and effectiveness of the proposed converter.","PeriodicalId":146438,"journal":{"name":"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An integrated four-port full-bridge converter with DMPPT for renewable power system\",\"authors\":\"Hongfei Wu, K. Sun, Zihu Zhou, Y. Xing\",\"doi\":\"10.1109/PEDG.2012.6254107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to involve multiple different renewable energy sources and balance power flow, a four-port full-bridge converter (FPFBC) with distributed maximum power point tracking (DMPPT) is proposed for renewable power systems. This converter, featuring two input ports, one bidirectional port and one isolated output port, is derived by integrating two Buck-Boost converters and a full-bridge converter. The switching legs are shared by the Buck/Boost converter and full-bride converter. Hence, single stage conversion between any two of the ports is achieved. As a result, high power density and high efficiency can be guaranteed. DMPPT is realized on the two input ports connecting to different renewable sources, which ensures maximum renewable energy harvest. A pulse-width modulation plus phase angle shift control scheme and a power control strategy are presented for the FPFBC to implement the power management of the four ports. The operation modes and principles of the proposed converter, along with the design considerations, are discussed in detail. Simulation and experimental results verify the feasibility and effectiveness of the proposed converter.\",\"PeriodicalId\":146438,\"journal\":{\"name\":\"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDG.2012.6254107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDG.2012.6254107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

为了兼顾多种不同的可再生能源和平衡潮流,提出了一种具有分布式最大功率点跟踪(DMPPT)的四端口全桥变换器(FPFBC)。该转换器具有两个输入端口,一个双向端口和一个隔离输出端口,由两个Buck-Boost转换器和一个全桥转换器集成而成。开关腿由Buck/Boost转换器和全新娘转换器共享。因此,实现了任意两个端口之间的单级转换。因此,可以保证高功率密度和高效率。在连接不同可再生能源的两个输入端口上实现DMPPT,确保可再生能源的最大收获。提出了一种脉宽调制+相位角移位控制方案和功率控制策略,用于FPFBC实现四个端口的功率管理。文中详细讨论了该变换器的工作模式和工作原理,以及设计上的考虑。仿真和实验结果验证了该变换器的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An integrated four-port full-bridge converter with DMPPT for renewable power system
In order to involve multiple different renewable energy sources and balance power flow, a four-port full-bridge converter (FPFBC) with distributed maximum power point tracking (DMPPT) is proposed for renewable power systems. This converter, featuring two input ports, one bidirectional port and one isolated output port, is derived by integrating two Buck-Boost converters and a full-bridge converter. The switching legs are shared by the Buck/Boost converter and full-bride converter. Hence, single stage conversion between any two of the ports is achieved. As a result, high power density and high efficiency can be guaranteed. DMPPT is realized on the two input ports connecting to different renewable sources, which ensures maximum renewable energy harvest. A pulse-width modulation plus phase angle shift control scheme and a power control strategy are presented for the FPFBC to implement the power management of the four ports. The operation modes and principles of the proposed converter, along with the design considerations, are discussed in detail. Simulation and experimental results verify the feasibility and effectiveness of the proposed converter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart — STATCOM control strategy implementation in wind power plants Common DC link in residential LV network to improve the penetration level of Small-Scale Embedded Generators Research on the reactive power optimization of distribution network including DG Use of petri nets for load sharing control in distributed generation applications Mega data center architecture under Smart Grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1