演化微分方程与发育线性遗传规划及表观遗传爬坡

W. L. Cava, L. Spector, K. Danai, M. Lackner
{"title":"演化微分方程与发育线性遗传规划及表观遗传爬坡","authors":"W. L. Cava, L. Spector, K. Danai, M. Lackner","doi":"10.1145/2598394.2598491","DOIUrl":null,"url":null,"abstract":"This paper describes a method of solving the symbolic regression problem using developmental linear genetic programming (DLGP) with an epigenetic hill climber (EHC). We propose the EHC for optimizing the epigenetic properties of the genotype. The epigenetic characteristics are then inherited through coevolution with the population. Results reveal that the EHC improves performance through maintenance of smaller expressed program sizes. For some problems it produces more successful runs while remaining essentially cost-neutral with respect to number of fitness evaluations.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Evolving differential equations with developmental linear genetic programming and epigenetic hill climbing\",\"authors\":\"W. L. Cava, L. Spector, K. Danai, M. Lackner\",\"doi\":\"10.1145/2598394.2598491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a method of solving the symbolic regression problem using developmental linear genetic programming (DLGP) with an epigenetic hill climber (EHC). We propose the EHC for optimizing the epigenetic properties of the genotype. The epigenetic characteristics are then inherited through coevolution with the population. Results reveal that the EHC improves performance through maintenance of smaller expressed program sizes. For some problems it produces more successful runs while remaining essentially cost-neutral with respect to number of fitness evaluations.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2598491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2598491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文描述了一种利用发育线性遗传规划(DLGP)求解表观遗传爬山者(EHC)的符号回归问题的方法。我们提出利用EHC优化该基因型的表观遗传特性。然后,表观遗传特征通过与群体的共同进化而遗传。结果表明,EHC通过保持较小的表达程序大小来提高性能。对于某些问题,它产生了更成功的运行,同时在健康评估的数量方面基本上保持成本中立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolving differential equations with developmental linear genetic programming and epigenetic hill climbing
This paper describes a method of solving the symbolic regression problem using developmental linear genetic programming (DLGP) with an epigenetic hill climber (EHC). We propose the EHC for optimizing the epigenetic properties of the genotype. The epigenetic characteristics are then inherited through coevolution with the population. Results reveal that the EHC improves performance through maintenance of smaller expressed program sizes. For some problems it produces more successful runs while remaining essentially cost-neutral with respect to number of fitness evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary synthesis of dynamical systems: the past, current, and future Incremental evolution of HERCL programs for robust control Selecting evolutionary operators using reinforcement learning: initial explorations Flood evolution: changing the evolutionary substrate from a path of stepping stones to a field of rocks Artificial immune systems for optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1