可信执行环境下流处理系统的网络侧信道泄漏缓解

Muhammad Bilal, Hassan Alsibyani, M. Canini
{"title":"可信执行环境下流处理系统的网络侧信道泄漏缓解","authors":"Muhammad Bilal, Hassan Alsibyani, M. Canini","doi":"10.1145/3210284.3210286","DOIUrl":null,"url":null,"abstract":"A crucial concern regarding cloud computing is the confidentiality of sensitive data being processed in the cloud. Trusted Execution Environments (TEEs), such as Intel Software Guard extensions (SGX), allow applications to run securely on an untrusted platform. However, using TEEs alone for stream processing is not enough to ensure privacy as network communication patterns may leak information about the data. This paper introduces two techniques -- anycast and multicast --for mitigating leakage at inter-stage communications in streaming applications according to a user-selected mitigation level. These techniques aim to achieve network data obliviousness, i.e., communication patterns should not depend on the data. We implement these techniques in an SGX-based stream processing system. We evaluate the latency and throughput overheads, and the data obliviousness using three benchmark applications. The results show that anycast scales better with input load and mitigation level, and provides better data obliviousness than multicast.","PeriodicalId":412438,"journal":{"name":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mitigating Network Side Channel Leakage for Stream Processing Systems in Trusted Execution Environments\",\"authors\":\"Muhammad Bilal, Hassan Alsibyani, M. Canini\",\"doi\":\"10.1145/3210284.3210286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A crucial concern regarding cloud computing is the confidentiality of sensitive data being processed in the cloud. Trusted Execution Environments (TEEs), such as Intel Software Guard extensions (SGX), allow applications to run securely on an untrusted platform. However, using TEEs alone for stream processing is not enough to ensure privacy as network communication patterns may leak information about the data. This paper introduces two techniques -- anycast and multicast --for mitigating leakage at inter-stage communications in streaming applications according to a user-selected mitigation level. These techniques aim to achieve network data obliviousness, i.e., communication patterns should not depend on the data. We implement these techniques in an SGX-based stream processing system. We evaluate the latency and throughput overheads, and the data obliviousness using three benchmark applications. The results show that anycast scales better with input load and mitigation level, and provides better data obliviousness than multicast.\",\"PeriodicalId\":412438,\"journal\":{\"name\":\"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3210284.3210286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3210284.3210286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

关于云计算的一个关键问题是在云中处理的敏感数据的保密性。受信任的执行环境(tee),如Intel Software Guard扩展(SGX),允许应用程序在不受信任的平台上安全地运行。然而,仅使用tee进行流处理不足以确保隐私,因为网络通信模式可能会泄露有关数据的信息。本文介绍了两种技术——任播和多播——用于根据用户选择的缓解级别减轻流应用程序中级间通信中的泄漏。这些技术旨在实现网络数据遗忘,即通信模式不应依赖于数据。我们在一个基于sgx的流处理系统中实现了这些技术。我们使用三个基准测试应用程序来评估延迟和吞吐量开销以及数据遗忘。结果表明,与组播相比,任意播可以更好地扩展输入负载和缓解级别,并提供更好的数据遗忘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitigating Network Side Channel Leakage for Stream Processing Systems in Trusted Execution Environments
A crucial concern regarding cloud computing is the confidentiality of sensitive data being processed in the cloud. Trusted Execution Environments (TEEs), such as Intel Software Guard extensions (SGX), allow applications to run securely on an untrusted platform. However, using TEEs alone for stream processing is not enough to ensure privacy as network communication patterns may leak information about the data. This paper introduces two techniques -- anycast and multicast --for mitigating leakage at inter-stage communications in streaming applications according to a user-selected mitigation level. These techniques aim to achieve network data obliviousness, i.e., communication patterns should not depend on the data. We implement these techniques in an SGX-based stream processing system. We evaluate the latency and throughput overheads, and the data obliviousness using three benchmark applications. The results show that anycast scales better with input load and mitigation level, and provides better data obliviousness than multicast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vessel Trajectory Prediction using Sequence-to-Sequence Models over Spatial Grid MtDetector Predicting Destinations by Nearest Neighbor Search on Training Vessel Routes Venilia, On-line Learning and Prediction of Vessel Destination Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1