{"title":"蜡染gan:蜡染创作的生成对抗网络","authors":"W. Chu, Lin-Yu Ko","doi":"10.1145/3379173.3393710","DOIUrl":null,"url":null,"abstract":"We propose a texture synthesis method based on generative adversarial networks, focusing on a cultural emblem, called Batik, of southeastern Asian countries. We propose a two-stage training approach to construct the network, first generating patches and then combining patches to generate the entire Batik image. Regular repetition and synthesis artifact removal are jointly considered to guide model training. In the evaluation, we show that the proposed generator fuses two Batik styles, removes blocking artifacts, and generates harmonious Batik images. Qualitative and quantitative evaluations are provided to show promising performance from several perspectives.","PeriodicalId":416027,"journal":{"name":"Proceedings of the 2020 Joint Workshop on Multimedia Artworks Analysis and Attractiveness Computing in Multimedia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"BatikGAN: A Generative Adversarial Network for Batik Creation\",\"authors\":\"W. Chu, Lin-Yu Ko\",\"doi\":\"10.1145/3379173.3393710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a texture synthesis method based on generative adversarial networks, focusing on a cultural emblem, called Batik, of southeastern Asian countries. We propose a two-stage training approach to construct the network, first generating patches and then combining patches to generate the entire Batik image. Regular repetition and synthesis artifact removal are jointly considered to guide model training. In the evaluation, we show that the proposed generator fuses two Batik styles, removes blocking artifacts, and generates harmonious Batik images. Qualitative and quantitative evaluations are provided to show promising performance from several perspectives.\",\"PeriodicalId\":416027,\"journal\":{\"name\":\"Proceedings of the 2020 Joint Workshop on Multimedia Artworks Analysis and Attractiveness Computing in Multimedia\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 Joint Workshop on Multimedia Artworks Analysis and Attractiveness Computing in Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3379173.3393710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Joint Workshop on Multimedia Artworks Analysis and Attractiveness Computing in Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3379173.3393710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种基于生成对抗网络的纹理合成方法,重点关注东南亚国家的文化标志,称为蜡染。我们提出了一种两阶段的训练方法来构建网络,首先生成补丁,然后将补丁组合起来生成整个Batik图像。有规律的重复和合成工件的去除被联合考虑来指导模型训练。在评价中,我们证明了所提出的生成器融合了两种蜡染风格,去除了阻塞的伪影,并生成了和谐的蜡染图像。提供定性和定量评价,从几个角度显示有希望的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BatikGAN: A Generative Adversarial Network for Batik Creation
We propose a texture synthesis method based on generative adversarial networks, focusing on a cultural emblem, called Batik, of southeastern Asian countries. We propose a two-stage training approach to construct the network, first generating patches and then combining patches to generate the entire Batik image. Regular repetition and synthesis artifact removal are jointly considered to guide model training. In the evaluation, we show that the proposed generator fuses two Batik styles, removes blocking artifacts, and generates harmonious Batik images. Qualitative and quantitative evaluations are provided to show promising performance from several perspectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic YouTube-Thumbnail Generation and Its Evaluation Proceedings of the 2020 Joint Workshop on Multimedia Artworks Analysis and Attractiveness Computing in Multimedia Style Image Retrieval for Improving Material Translation Using Neural Style Transfer Session details: Attractiveness Computing in Multimedia BatikGAN: A Generative Adversarial Network for Batik Creation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1