功能即服务的模拟和基准测试管道

Johannes Manner
{"title":"功能即服务的模拟和基准测试管道","authors":"Johannes Manner","doi":"10.20378/irb-52238","DOIUrl":null,"url":null,"abstract":"Cloud computing started with the promise of delivering computing resources elastically at scale, pay per use and on demand self-service to name a few capabilities. In early 2016, Amazon Web Services (AWS) launched a new product called AWS Lambda which started the so called serverless hype and established a new cloud delivery model, namely Function as a Service (FaaS). FaaS offerings keep the promise of delivering computing resources on demand. They dynamically scale up and down function instances and introduce the most fine-grained billing model across all as-a-service offerings by accounting on a milliseconds basis. Despite this flexibility and the possibility to concentrate on the business functionality, a FaaS user loses operational control. Only a few configuration options remain to tune the functions. The first pay-as-you-go billing model raises new questions for performance-cost trade-offs. In order to choose a suitable configuration dependent on the use case and get a solid understanding of performance impact of FaaS platforms, SeMoDe implements a benchmarking and simulation pipeline. It calibrates a physical developer machine, simulates the function in different settings which are comparable to those of cloud offerings and enables a decision guidance to choose an appropriate configuration when deploying it. Based on a Structured Literature Review (SLR) to show the benchmarking and simulation efforts, I suggest a checklist for conducting fair, repeatable and meaningful benchmarks with a focus on documenting the experiments.","PeriodicalId":146702,"journal":{"name":"Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SeMoDe – Simulation and Benchmarking Pipeline for Function as a Service\",\"authors\":\"Johannes Manner\",\"doi\":\"10.20378/irb-52238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud computing started with the promise of delivering computing resources elastically at scale, pay per use and on demand self-service to name a few capabilities. In early 2016, Amazon Web Services (AWS) launched a new product called AWS Lambda which started the so called serverless hype and established a new cloud delivery model, namely Function as a Service (FaaS). FaaS offerings keep the promise of delivering computing resources on demand. They dynamically scale up and down function instances and introduce the most fine-grained billing model across all as-a-service offerings by accounting on a milliseconds basis. Despite this flexibility and the possibility to concentrate on the business functionality, a FaaS user loses operational control. Only a few configuration options remain to tune the functions. The first pay-as-you-go billing model raises new questions for performance-cost trade-offs. In order to choose a suitable configuration dependent on the use case and get a solid understanding of performance impact of FaaS platforms, SeMoDe implements a benchmarking and simulation pipeline. It calibrates a physical developer machine, simulates the function in different settings which are comparable to those of cloud offerings and enables a decision guidance to choose an appropriate configuration when deploying it. Based on a Structured Literature Review (SLR) to show the benchmarking and simulation efforts, I suggest a checklist for conducting fair, repeatable and meaningful benchmarks with a focus on documenting the experiments.\",\"PeriodicalId\":146702,\"journal\":{\"name\":\"Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20378/irb-52238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20378/irb-52238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

云计算开始时承诺以弹性的规模提供计算资源,按使用付费和按需自助服务等等。2016年初,亚马逊网络服务(AWS)推出了一款名为AWS Lambda的新产品,开启了所谓的无服务器炒作,并建立了一种新的云交付模式,即功能即服务(FaaS)。FaaS产品保证了按需交付计算资源的承诺。它们动态地向上和向下扩展功能实例,并通过以毫秒为单位记帐,在所有作为服务的产品中引入最细粒度的计费模型。尽管有这种灵活性和专注于业务功能的可能性,但FaaS用户失去了对操作的控制。只剩下几个配置选项来调优这些功能。第一种现收现付计费模式提出了性能成本权衡的新问题。为了根据用例选择合适的配置,并深入了解FaaS平台对性能的影响,SeMoDe实现了基准测试和模拟管道。它校准物理开发人员机器,模拟不同设置中的功能,这些设置与云产品相当,并在部署时提供决策指导以选择适当的配置。基于结构化文献综述(SLR)来展示基准测试和模拟工作,我建议一个清单来进行公平、可重复和有意义的基准测试,重点是记录实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SeMoDe – Simulation and Benchmarking Pipeline for Function as a Service
Cloud computing started with the promise of delivering computing resources elastically at scale, pay per use and on demand self-service to name a few capabilities. In early 2016, Amazon Web Services (AWS) launched a new product called AWS Lambda which started the so called serverless hype and established a new cloud delivery model, namely Function as a Service (FaaS). FaaS offerings keep the promise of delivering computing resources on demand. They dynamically scale up and down function instances and introduce the most fine-grained billing model across all as-a-service offerings by accounting on a milliseconds basis. Despite this flexibility and the possibility to concentrate on the business functionality, a FaaS user loses operational control. Only a few configuration options remain to tune the functions. The first pay-as-you-go billing model raises new questions for performance-cost trade-offs. In order to choose a suitable configuration dependent on the use case and get a solid understanding of performance impact of FaaS platforms, SeMoDe implements a benchmarking and simulation pipeline. It calibrates a physical developer machine, simulates the function in different settings which are comparable to those of cloud offerings and enables a decision guidance to choose an appropriate configuration when deploying it. Based on a Structured Literature Review (SLR) to show the benchmarking and simulation efforts, I suggest a checklist for conducting fair, repeatable and meaningful benchmarks with a focus on documenting the experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SeMoDe – Simulation and Benchmarking Pipeline for Function as a Service
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1