动态手势识别中二维手势轨迹特征提取

M. Bhuyan, D. Ghosh, P. Bora
{"title":"动态手势识别中二维手势轨迹特征提取","authors":"M. Bhuyan, D. Ghosh, P. Bora","doi":"10.1109/ICCIS.2006.252353","DOIUrl":null,"url":null,"abstract":"Vision-based hand gesture recognition is a popular research topic for human-machine interaction (HMI). We have earlier developed a model-based method for tracking hand motion in complex scene by using Hausdorff tracker. In this paper, we now propose to extract certain features from the gesture trajectory so as to identify the form of the trajectory. Thus, these features can be efficiently used for trajectory guided recognition/classification of hand gestures. Our experimental results show 95% of accuracy in identifying the forms of the gesture trajectories. This indicates that the trajectory features proposed in this paper are appropriate for defining a particular gesture trajectory","PeriodicalId":296028,"journal":{"name":"2006 IEEE Conference on Cybernetics and Intelligent Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Feature Extraction from 2D Gesture Trajectory in Dynamic Hand Gesture Recognition\",\"authors\":\"M. Bhuyan, D. Ghosh, P. Bora\",\"doi\":\"10.1109/ICCIS.2006.252353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vision-based hand gesture recognition is a popular research topic for human-machine interaction (HMI). We have earlier developed a model-based method for tracking hand motion in complex scene by using Hausdorff tracker. In this paper, we now propose to extract certain features from the gesture trajectory so as to identify the form of the trajectory. Thus, these features can be efficiently used for trajectory guided recognition/classification of hand gestures. Our experimental results show 95% of accuracy in identifying the forms of the gesture trajectories. This indicates that the trajectory features proposed in this paper are appropriate for defining a particular gesture trajectory\",\"PeriodicalId\":296028,\"journal\":{\"name\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2006.252353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2006.252353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

基于视觉的手势识别是人机交互领域的一个热门研究课题。我们已经开发了一种基于模型的方法,利用Hausdorff跟踪器跟踪复杂场景中的手部运动。在本文中,我们提出从手势轨迹中提取一定的特征,从而识别轨迹的形式。因此,这些特征可以有效地用于轨迹引导的手势识别/分类。我们的实验结果表明,识别手势轨迹形式的准确率达到95%。这表明本文提出的轨迹特征适合于定义特定的手势轨迹
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature Extraction from 2D Gesture Trajectory in Dynamic Hand Gesture Recognition
Vision-based hand gesture recognition is a popular research topic for human-machine interaction (HMI). We have earlier developed a model-based method for tracking hand motion in complex scene by using Hausdorff tracker. In this paper, we now propose to extract certain features from the gesture trajectory so as to identify the form of the trajectory. Thus, these features can be efficiently used for trajectory guided recognition/classification of hand gestures. Our experimental results show 95% of accuracy in identifying the forms of the gesture trajectories. This indicates that the trajectory features proposed in this paper are appropriate for defining a particular gesture trajectory
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-layer Control Strategy of Dynamics Control System of Vehicle A Fuzzy Multiple Critera Decision Making Method Gait Recognition Considering Directions of Walking Nonlinear Diffusion Driven by Local Features for Image Denoising Designing of an Adaptive Adcock Array and Reducing the Effects of Other Transmitters, Unwanted Reflections and Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1