{"title":"GBPS速率发射机的自致供电降噪技术","authors":"Nitin Gupta, Tapas Nandy, P. Bala","doi":"10.1109/VLSID.2012.52","DOIUrl":null,"url":null,"abstract":"In high speed link transmitters, one major contributor of jitter is the data-dependant switching of the transmitters. Such switching leads to oscillations in the supply R-L-C network. This paper presents an area-efficient way to reduce this supply noise by shifting the switching beyond the resonance frequency of the supply network, irrespective of the data-pattern. This scheme is implemented in HDMI transmitter in 65nm technology.","PeriodicalId":405021,"journal":{"name":"2012 25th International Conference on VLSI Design","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Self-Induced Supply Noise Reduction Technique in GBPS Rate Transmitters\",\"authors\":\"Nitin Gupta, Tapas Nandy, P. Bala\",\"doi\":\"10.1109/VLSID.2012.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In high speed link transmitters, one major contributor of jitter is the data-dependant switching of the transmitters. Such switching leads to oscillations in the supply R-L-C network. This paper presents an area-efficient way to reduce this supply noise by shifting the switching beyond the resonance frequency of the supply network, irrespective of the data-pattern. This scheme is implemented in HDMI transmitter in 65nm technology.\",\"PeriodicalId\":405021,\"journal\":{\"name\":\"2012 25th International Conference on VLSI Design\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 25th International Conference on VLSI Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSID.2012.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 25th International Conference on VLSI Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSID.2012.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-Induced Supply Noise Reduction Technique in GBPS Rate Transmitters
In high speed link transmitters, one major contributor of jitter is the data-dependant switching of the transmitters. Such switching leads to oscillations in the supply R-L-C network. This paper presents an area-efficient way to reduce this supply noise by shifting the switching beyond the resonance frequency of the supply network, irrespective of the data-pattern. This scheme is implemented in HDMI transmitter in 65nm technology.