基于混合学习的外企德语数据库查询优化

Yan Chengcheng
{"title":"基于混合学习的外企德语数据库查询优化","authors":"Yan Chengcheng","doi":"10.1142/s0219649222400196","DOIUrl":null,"url":null,"abstract":"Traditional database query optimisation methods use stochastic algorithms to approximate the query optimisation results by continuously adjusting the optimisation plan. Since the stochastic algorithm only performs query optimisation from a single perspective, it leads to no significant improvement of the optimised database query efficiency. To address the above problems, we studied the query optimisation method of foreign enterprises’ German language data database based on hybrid learning. By reducing the database query search space and selecting query optimisation strategy, the data query complexity is reduced. After estimating the cost of database query optimisation, the policy selection algorithm is trained using the hybrid learning theory to obtain the database query optimisation path. The simulation experimental results show that the average query response of the optimised database after applying the studied method saves about 13.6%, and the query cost is lower and the optimisation effect is better.","PeriodicalId":127309,"journal":{"name":"J. Inf. Knowl. Manag.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimisation of German Language Database Query for Foreign Companies Based on Hybrid Learning\",\"authors\":\"Yan Chengcheng\",\"doi\":\"10.1142/s0219649222400196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional database query optimisation methods use stochastic algorithms to approximate the query optimisation results by continuously adjusting the optimisation plan. Since the stochastic algorithm only performs query optimisation from a single perspective, it leads to no significant improvement of the optimised database query efficiency. To address the above problems, we studied the query optimisation method of foreign enterprises’ German language data database based on hybrid learning. By reducing the database query search space and selecting query optimisation strategy, the data query complexity is reduced. After estimating the cost of database query optimisation, the policy selection algorithm is trained using the hybrid learning theory to obtain the database query optimisation path. The simulation experimental results show that the average query response of the optimised database after applying the studied method saves about 13.6%, and the query cost is lower and the optimisation effect is better.\",\"PeriodicalId\":127309,\"journal\":{\"name\":\"J. Inf. Knowl. Manag.\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Knowl. Manag.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219649222400196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Knowl. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219649222400196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的数据库查询优化方法采用随机算法,通过不断调整优化计划来逼近查询优化结果。由于随机算法只从单一角度进行查询优化,因此优化后的数据库查询效率没有显著提高。针对上述问题,我们研究了基于混合学习的外资企业德语数据库查询优化方法。通过减少数据库查询搜索空间和选择查询优化策略,降低了数据查询的复杂度。在估计数据库查询优化成本后,利用混合学习理论对策略选择算法进行训练,得到数据库查询优化路径。仿真实验结果表明,应用该方法优化后的数据库查询响应平均节省约13.6%,查询成本较低,优化效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimisation of German Language Database Query for Foreign Companies Based on Hybrid Learning
Traditional database query optimisation methods use stochastic algorithms to approximate the query optimisation results by continuously adjusting the optimisation plan. Since the stochastic algorithm only performs query optimisation from a single perspective, it leads to no significant improvement of the optimised database query efficiency. To address the above problems, we studied the query optimisation method of foreign enterprises’ German language data database based on hybrid learning. By reducing the database query search space and selecting query optimisation strategy, the data query complexity is reduced. After estimating the cost of database query optimisation, the policy selection algorithm is trained using the hybrid learning theory to obtain the database query optimisation path. The simulation experimental results show that the average query response of the optimised database after applying the studied method saves about 13.6%, and the query cost is lower and the optimisation effect is better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge Management in Higher Education in Vietnam: Insights from Higher Education Leaders - An Exploratory Study The Organisation's Size-Innovation Performance Relationship: The Role of Human Resource Development Mechanisms A Comparative Review of Sentimental Analysis Using Machine Learning and Deep Learning Approaches Vocational Education Information Technology Based on Cross-Attention Fusion Knowledge Map Recommendation Algorithm Redesigning Knowledge Management Through Corporate Sustainability Strategy in the Post-Pandemic Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1