{"title":"高层建筑对远场地震的响应及以49层钢结构建筑为例","authors":"S. Muin, A. Astaneh-Asl, C. Topkaya","doi":"10.1504/ijeie.2020.10027031","DOIUrl":null,"url":null,"abstract":"This paper investigates the seismic response of an instrumented 49-storey steel structure in San Francisco to weak, far-field, and strong, near-field ground motions. The instrumentation records obtained during the 1989 Loma Prieta earthquake are used to verify the accuracy of the predictions of the time-history analysis of the model. The ChiChi-002 ground motion record from the 1992 Chi-Chi earthquake in Taiwan (PGA = 0.08 g), representing a 'weak, far-field' earthquake and the record from the 1994 Northridge-Newhall earthquake (PGA = 0.60 g) representing a 'strong, near-field' earthquake were used in the study. The results showed that the force, acceleration, and displacement responses of this long-period structure to the 'weak far-field' ground motion are much larger than its response to the 'strong, near-field' ground motion. Also, the response attenuates at a slower rate for the weak, far-field earthquake, indicating the possibility of greater damage, both to structural and non-structural elements, during the earthquake. Interim seismic design recommendations are formulated to address this issue in the design of tall buildings with long periods.","PeriodicalId":440568,"journal":{"name":"International Journal of Earthquake and Impact Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The response of tall buildings to far-field earthquakes and the case of a 49-storey steel building\",\"authors\":\"S. Muin, A. Astaneh-Asl, C. Topkaya\",\"doi\":\"10.1504/ijeie.2020.10027031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the seismic response of an instrumented 49-storey steel structure in San Francisco to weak, far-field, and strong, near-field ground motions. The instrumentation records obtained during the 1989 Loma Prieta earthquake are used to verify the accuracy of the predictions of the time-history analysis of the model. The ChiChi-002 ground motion record from the 1992 Chi-Chi earthquake in Taiwan (PGA = 0.08 g), representing a 'weak, far-field' earthquake and the record from the 1994 Northridge-Newhall earthquake (PGA = 0.60 g) representing a 'strong, near-field' earthquake were used in the study. The results showed that the force, acceleration, and displacement responses of this long-period structure to the 'weak far-field' ground motion are much larger than its response to the 'strong, near-field' ground motion. Also, the response attenuates at a slower rate for the weak, far-field earthquake, indicating the possibility of greater damage, both to structural and non-structural elements, during the earthquake. Interim seismic design recommendations are formulated to address this issue in the design of tall buildings with long periods.\",\"PeriodicalId\":440568,\"journal\":{\"name\":\"International Journal of Earthquake and Impact Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Earthquake and Impact Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijeie.2020.10027031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Earthquake and Impact Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijeie.2020.10027031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The response of tall buildings to far-field earthquakes and the case of a 49-storey steel building
This paper investigates the seismic response of an instrumented 49-storey steel structure in San Francisco to weak, far-field, and strong, near-field ground motions. The instrumentation records obtained during the 1989 Loma Prieta earthquake are used to verify the accuracy of the predictions of the time-history analysis of the model. The ChiChi-002 ground motion record from the 1992 Chi-Chi earthquake in Taiwan (PGA = 0.08 g), representing a 'weak, far-field' earthquake and the record from the 1994 Northridge-Newhall earthquake (PGA = 0.60 g) representing a 'strong, near-field' earthquake were used in the study. The results showed that the force, acceleration, and displacement responses of this long-period structure to the 'weak far-field' ground motion are much larger than its response to the 'strong, near-field' ground motion. Also, the response attenuates at a slower rate for the weak, far-field earthquake, indicating the possibility of greater damage, both to structural and non-structural elements, during the earthquake. Interim seismic design recommendations are formulated to address this issue in the design of tall buildings with long periods.