基于元模型敏感性分析的仿真场景样本空间生成方法

Jing An, Wei Liu, Wanting Rong, Haoliang Qi
{"title":"基于元模型敏感性分析的仿真场景样本空间生成方法","authors":"Jing An, Wei Liu, Wanting Rong, Haoliang Qi","doi":"10.1109/ICARCE55724.2022.10046468","DOIUrl":null,"url":null,"abstract":"To ensure the feasibility and effectiveness of exploratory simulation experiments, it is necessary to take the simulation scenario sample space with acceptable scale and typical representative as input. In this paper, a method of generating simulation scenario sample space combining qualitative and quantitative analysis is proposed. This method constructs a machine learning meta-model based on simulation pre-experiment, and screens the key experimental factors based on sensitivity analysis of meta-model to determine the factor levels. Finally, the space is sampled and compressed to complete the generation of the hypothetical sample space.","PeriodicalId":416305,"journal":{"name":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Generation Method of Simulation Scenario Sample Space Based on Sensitivity Analysis of Meta-model\",\"authors\":\"Jing An, Wei Liu, Wanting Rong, Haoliang Qi\",\"doi\":\"10.1109/ICARCE55724.2022.10046468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To ensure the feasibility and effectiveness of exploratory simulation experiments, it is necessary to take the simulation scenario sample space with acceptable scale and typical representative as input. In this paper, a method of generating simulation scenario sample space combining qualitative and quantitative analysis is proposed. This method constructs a machine learning meta-model based on simulation pre-experiment, and screens the key experimental factors based on sensitivity analysis of meta-model to determine the factor levels. Finally, the space is sampled and compressed to complete the generation of the hypothetical sample space.\",\"PeriodicalId\":416305,\"journal\":{\"name\":\"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCE55724.2022.10046468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCE55724.2022.10046468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了保证探索性仿真实验的可行性和有效性,有必要将具有可接受规模和典型代表性的仿真场景样本空间作为输入。本文提出了一种定性分析与定量分析相结合的仿真场景样本空间生成方法。该方法构建了基于仿真预实验的机器学习元模型,并基于元模型的敏感性分析筛选关键实验因子,确定因子水平。最后对空间进行采样和压缩,完成假设样本空间的生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Generation Method of Simulation Scenario Sample Space Based on Sensitivity Analysis of Meta-model
To ensure the feasibility and effectiveness of exploratory simulation experiments, it is necessary to take the simulation scenario sample space with acceptable scale and typical representative as input. In this paper, a method of generating simulation scenario sample space combining qualitative and quantitative analysis is proposed. This method constructs a machine learning meta-model based on simulation pre-experiment, and screens the key experimental factors based on sensitivity analysis of meta-model to determine the factor levels. Finally, the space is sampled and compressed to complete the generation of the hypothetical sample space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of MobileRobot Navigation System Based on ROS Platform Cooperative Pursuit in a Non-closed Bounded Domain 3D Reconstruction of Astronomical Site Selection Based on Multi-Source Remote Sensing Design and Implementation of Manipulator Based on Arduino Dynamic Reversible Data Hiding for Edge Contrast Enhancement of Medical Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1