用多层感知器回归器预测巴西每月车辆价值/贬值:基于过去销售、通货膨胀和利率的案例研究

André Roberto Ortoncelli, Franciele Beal
{"title":"用多层感知器回归器预测巴西每月车辆价值/贬值:基于过去销售、通货膨胀和利率的案例研究","authors":"André Roberto Ortoncelli, Franciele Beal","doi":"10.5753/erbd.2023.229383","DOIUrl":null,"url":null,"abstract":"This work presents a comparison between the valuation/depreciation prediction results (from one month to another) of vehicles in Brazil considering the combination of four groups of characteristics: i) previous sales; ii) the number of vehicle sales; iii) basic interest rate; and iv) national consumer price index. We create a comparison baseline training a MultiLayer Perceptron Regressor (MLPR) based only on the vehicle’s value in the previous month, and then we train the MLPR by combining the previous vehicle value with combinations of the characteristic groups. Experiments were performed from 2013 to 2022 and evaluated in terms of Mean Squared Error (MSR) and Median Absolute Error (MAE). The combination of characteristics that presented the best MSR for the 2018-2022 period (COVID-19 period) was among the worst from 2014 to 2017. It is possibly concluded that data scientists must periodically adjust parameters according to the current economic conditions to obtain the best automatic forecast results of the monthly valorization/depreciation of vehicles in Brazil.","PeriodicalId":442588,"journal":{"name":"Anais da XVIII Escola Regional de Banco de Dados (ERBD 2023)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of monthly vehicle valorization/devaluation in Brazil with a MultiLayer Perceptron Regressor: a case study based on past sales, inflation, and interest rate\",\"authors\":\"André Roberto Ortoncelli, Franciele Beal\",\"doi\":\"10.5753/erbd.2023.229383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a comparison between the valuation/depreciation prediction results (from one month to another) of vehicles in Brazil considering the combination of four groups of characteristics: i) previous sales; ii) the number of vehicle sales; iii) basic interest rate; and iv) national consumer price index. We create a comparison baseline training a MultiLayer Perceptron Regressor (MLPR) based only on the vehicle’s value in the previous month, and then we train the MLPR by combining the previous vehicle value with combinations of the characteristic groups. Experiments were performed from 2013 to 2022 and evaluated in terms of Mean Squared Error (MSR) and Median Absolute Error (MAE). The combination of characteristics that presented the best MSR for the 2018-2022 period (COVID-19 period) was among the worst from 2014 to 2017. It is possibly concluded that data scientists must periodically adjust parameters according to the current economic conditions to obtain the best automatic forecast results of the monthly valorization/depreciation of vehicles in Brazil.\",\"PeriodicalId\":442588,\"journal\":{\"name\":\"Anais da XVIII Escola Regional de Banco de Dados (ERBD 2023)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais da XVIII Escola Regional de Banco de Dados (ERBD 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/erbd.2023.229383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais da XVIII Escola Regional de Banco de Dados (ERBD 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/erbd.2023.229383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了巴西车辆的估值/折旧预测结果(从一个月到另一个月)的比较,考虑到四组特征的组合:i)以前的销售;Ii)车辆销售数量;(三)基本利率;(四)全国居民消费价格指数。我们仅基于前一个月的车辆值创建一个训练多层感知器回归器(MultiLayer Perceptron Regressor, MLPR)的比较基线,然后通过将前一个月的车辆值与特征组的组合相结合来训练MLPR。实验于2013年至2022年进行,并以均方误差(MSR)和中位数绝对误差(MAE)进行评估。2018-2022年期间(新冠肺炎期间)表现出最佳MSR的特征组合是2014年至2017年最差的特征组合。可以得出结论,数据科学家必须根据当前的经济状况定期调整参数,才能获得巴西每月车辆增值/折旧的最佳自动预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of monthly vehicle valorization/devaluation in Brazil with a MultiLayer Perceptron Regressor: a case study based on past sales, inflation, and interest rate
This work presents a comparison between the valuation/depreciation prediction results (from one month to another) of vehicles in Brazil considering the combination of four groups of characteristics: i) previous sales; ii) the number of vehicle sales; iii) basic interest rate; and iv) national consumer price index. We create a comparison baseline training a MultiLayer Perceptron Regressor (MLPR) based only on the vehicle’s value in the previous month, and then we train the MLPR by combining the previous vehicle value with combinations of the characteristic groups. Experiments were performed from 2013 to 2022 and evaluated in terms of Mean Squared Error (MSR) and Median Absolute Error (MAE). The combination of characteristics that presented the best MSR for the 2018-2022 period (COVID-19 period) was among the worst from 2014 to 2017. It is possibly concluded that data scientists must periodically adjust parameters according to the current economic conditions to obtain the best automatic forecast results of the monthly valorization/depreciation of vehicles in Brazil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estudo Comparativo de Estratégias para o Pareamento de Nomes de Entidades na Língua Portuguesa Estudo de caso sobre o processamento de consultas com a engine FederatedX Pontualidade do Transporte Público de Curitiba: Uma Visão a Partir de Dados Abertos Vocações Econômicas de Curitiba: Um Estudo a Partir de Uma Base de Dados Aberta Engenharia e Avaliação de Features para Extração de Informação em Notas Fiscais
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1