[100]横向偏置InAs/GaAs量子点的量子受限Stark位移和基态光跃迁速率

M. Usman, H. Ryu, Sunhee Lee, Y. H. Tan, Gerhard Klimeck
{"title":"[100]横向偏置InAs/GaAs量子点的量子受限Stark位移和基态光跃迁速率","authors":"M. Usman, H. Ryu, Sunhee Lee, Y. H. Tan, Gerhard Klimeck","doi":"10.1109/IWCE.2009.5091140","DOIUrl":null,"url":null,"abstract":"The atomistic tight binding simulator NEMO 3-D has previously been validated against the experimental data for quantum dots, wells, and wires in the InGaAlAs and SiGe material systems. Here, we demonstrate our new capability to compute optical matrix elements and transition strengths in tight binding. Systematic multi-million atom electronic structure calculations explore the quantum confined stark shift and the ground state optical transition rate for an electric field in the lateral (100) direction. The simulations treat the strain in a ~15 million atom system and the electronic structure in a subset of ~9 million atoms. The effects of the long range strain, the optical polarization anisotropy, the interface roughness, and the non- degeneracy of the p-states which are missing in continuum methods like effective mass approximation or kp are included. A significant red shift in the emission spectra due to an applied in- plane electric field indicating a strong quantum confined stark effect (QSCE) is observed. The ground state optical transition rate rapidly decreases with the increasing electric field magnitude due to reduced spatial overlap of ground electron and hole states.","PeriodicalId":443119,"journal":{"name":"2009 13th International Workshop on Computational Electronics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Quantum Confined Stark Shift and Ground State Optical Transition Rate in [100] Laterally Biased InAs/GaAs Quantum Dots\",\"authors\":\"M. Usman, H. Ryu, Sunhee Lee, Y. H. Tan, Gerhard Klimeck\",\"doi\":\"10.1109/IWCE.2009.5091140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The atomistic tight binding simulator NEMO 3-D has previously been validated against the experimental data for quantum dots, wells, and wires in the InGaAlAs and SiGe material systems. Here, we demonstrate our new capability to compute optical matrix elements and transition strengths in tight binding. Systematic multi-million atom electronic structure calculations explore the quantum confined stark shift and the ground state optical transition rate for an electric field in the lateral (100) direction. The simulations treat the strain in a ~15 million atom system and the electronic structure in a subset of ~9 million atoms. The effects of the long range strain, the optical polarization anisotropy, the interface roughness, and the non- degeneracy of the p-states which are missing in continuum methods like effective mass approximation or kp are included. A significant red shift in the emission spectra due to an applied in- plane electric field indicating a strong quantum confined stark effect (QSCE) is observed. The ground state optical transition rate rapidly decreases with the increasing electric field magnitude due to reduced spatial overlap of ground electron and hole states.\",\"PeriodicalId\":443119,\"journal\":{\"name\":\"2009 13th International Workshop on Computational Electronics\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 13th International Workshop on Computational Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2009.5091140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 13th International Workshop on Computational Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2009.5091140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

原子紧密结合模拟器NEMO - 3-D之前已经针对InGaAlAs和SiGe材料系统中的量子点、井和导线的实验数据进行了验证。在这里,我们展示了我们的新能力,以计算光学矩阵元素和跃迁强度在紧密结合。系统的百万原子电子结构计算探讨了横向(100)方向电场的量子受限stark位移和基态光学跃迁速率。模拟处理了~ 1500万个原子系统中的应变和~ 900万个原子子集中的电子结构。包括了在有效质量近似和kp等连续介质方法中缺少的长程应变、光学偏振各向异性、界面粗糙度和p态的非简并性的影响。由于施加在平面内的电场,在发射光谱中观察到明显的红移,表明强量子受限斯塔克效应(QSCE)。由于基态和空穴态空间重叠的减少,基态的光跃迁速率随着电场大小的增加而迅速降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum Confined Stark Shift and Ground State Optical Transition Rate in [100] Laterally Biased InAs/GaAs Quantum Dots
The atomistic tight binding simulator NEMO 3-D has previously been validated against the experimental data for quantum dots, wells, and wires in the InGaAlAs and SiGe material systems. Here, we demonstrate our new capability to compute optical matrix elements and transition strengths in tight binding. Systematic multi-million atom electronic structure calculations explore the quantum confined stark shift and the ground state optical transition rate for an electric field in the lateral (100) direction. The simulations treat the strain in a ~15 million atom system and the electronic structure in a subset of ~9 million atoms. The effects of the long range strain, the optical polarization anisotropy, the interface roughness, and the non- degeneracy of the p-states which are missing in continuum methods like effective mass approximation or kp are included. A significant red shift in the emission spectra due to an applied in- plane electric field indicating a strong quantum confined stark effect (QSCE) is observed. The ground state optical transition rate rapidly decreases with the increasing electric field magnitude due to reduced spatial overlap of ground electron and hole states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Correlation Effects in Silicon Nanowire MOSFETs Charge-based Mobility Modeling for Organic Semiconductors Wigner Monte Carlo Simulation of CNTFET: Comparison Between Semi-Classical and Quantum Transport Semiconductor Technology-Trends, Challenges and Opportunities Computation of Complex Band Structures in Bulk and Confined Structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1