碳同位素数据验证了碳周转新模型

Ivlev Aa
{"title":"碳同位素数据验证了碳周转新模型","authors":"Ivlev Aa","doi":"10.4172/2155-9910.1000218","DOIUrl":null,"url":null,"abstract":"A new global redox carbon cycle model is suggested. It claims that lithospheric plates’ movement exerts an impact on photosynthesis development. The impact is realized via periodic injections of CO2 coming from zones of plates’ collisions. Carbon dioxide is derived from oxidation of sedimentary organic carbon in thermochemical sulfate reduction proceeding in subduction zones. Carbon turnover is considered as a conversion of the element from the oxidized state (CO2 + HCO3- + CO3-) into the reduced state produced in photosynthesis and in the following transformation. The isotopic data confirm the validity of the model. They explain the observed correlation of carbon isotope composition of sedimentary organic matter with geologic age. It was found that the difference between carbon isotope composition of organic matter and that of coeval carbonates is an analog of the carbon 13C isotope discrimination in photosynthesis used for modern plants. The periodicity of isotopic characteristics correlates with periodicity of climatic changes, mass extinctions, with the irregularity of stratigraphic distribution of rocks rich in organic matter and other periodic events in biosphere.","PeriodicalId":331621,"journal":{"name":"Journal of Marine Science: Research & Development","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Carbon Isotopic Data Validate the New Model of Carbon Turnover\",\"authors\":\"Ivlev Aa\",\"doi\":\"10.4172/2155-9910.1000218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new global redox carbon cycle model is suggested. It claims that lithospheric plates’ movement exerts an impact on photosynthesis development. The impact is realized via periodic injections of CO2 coming from zones of plates’ collisions. Carbon dioxide is derived from oxidation of sedimentary organic carbon in thermochemical sulfate reduction proceeding in subduction zones. Carbon turnover is considered as a conversion of the element from the oxidized state (CO2 + HCO3- + CO3-) into the reduced state produced in photosynthesis and in the following transformation. The isotopic data confirm the validity of the model. They explain the observed correlation of carbon isotope composition of sedimentary organic matter with geologic age. It was found that the difference between carbon isotope composition of organic matter and that of coeval carbonates is an analog of the carbon 13C isotope discrimination in photosynthesis used for modern plants. The periodicity of isotopic characteristics correlates with periodicity of climatic changes, mass extinctions, with the irregularity of stratigraphic distribution of rocks rich in organic matter and other periodic events in biosphere.\",\"PeriodicalId\":331621,\"journal\":{\"name\":\"Journal of Marine Science: Research & Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science: Research & Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2155-9910.1000218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science: Research & Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-9910.1000218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的全球氧化还原碳循环模型。它声称岩石圈板块的运动对光合作用的发展产生了影响。这种冲击是通过来自板块碰撞区域的二氧化碳周期性注入来实现的。二氧化碳来源于俯冲带中沉积有机碳在热化学硫酸盐还原过程中的氧化作用。碳循环被认为是元素从氧化态(CO2 + HCO3- + CO3-)转化为光合作用和随后转化产生的还原态的过程。同位素数据证实了模型的有效性。他们解释了观察到的沉积有机质碳同位素组成与地质年代的相关性。发现有机质与同时期碳酸盐碳同位素组成的差异类似于现代植物光合作用中碳13C同位素的区别。同位素特征的周期性与气候变化的周期性、生物大灭绝的周期性、富有机质岩石地层分布的不规则性等生物圈周期性事件有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carbon Isotopic Data Validate the New Model of Carbon Turnover
A new global redox carbon cycle model is suggested. It claims that lithospheric plates’ movement exerts an impact on photosynthesis development. The impact is realized via periodic injections of CO2 coming from zones of plates’ collisions. Carbon dioxide is derived from oxidation of sedimentary organic carbon in thermochemical sulfate reduction proceeding in subduction zones. Carbon turnover is considered as a conversion of the element from the oxidized state (CO2 + HCO3- + CO3-) into the reduced state produced in photosynthesis and in the following transformation. The isotopic data confirm the validity of the model. They explain the observed correlation of carbon isotope composition of sedimentary organic matter with geologic age. It was found that the difference between carbon isotope composition of organic matter and that of coeval carbonates is an analog of the carbon 13C isotope discrimination in photosynthesis used for modern plants. The periodicity of isotopic characteristics correlates with periodicity of climatic changes, mass extinctions, with the irregularity of stratigraphic distribution of rocks rich in organic matter and other periodic events in biosphere.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Review on Pathogenic Diseases on Corals Associated Risk Factors and Possible Devastation in Future in the Globe Efficiency Analysis with Different Models: The Case of Container Ports Climate: Water Security and Climate Change Design and Control of a Self-Balancing Autonomous Underwater Vehicle with Vision and Detection Capabilities Vitellogenin Level in the Plasma of Russian Sturgeon ( Acipenser gueldenstaedtii ) Northern Israel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1