一种基于增强双流网络的人脸伪造检测方法

Yumei Liu, Yong Zhang, Weiran Liu
{"title":"一种基于增强双流网络的人脸伪造检测方法","authors":"Yumei Liu, Yong Zhang, Weiran Liu","doi":"10.1145/3573942.3574030","DOIUrl":null,"url":null,"abstract":"The current face forgery methods based on deep learning are becoming more mature and abundant, and existing detection techniques have some limitations and applicability issues that make it difficult to effectively detect such behaviour. In this paper, we propose an enhanced dual-stream FC_2_stream network model based on dual-stream networks to detect forged regions in manipulated face images through end-to-end training of the images. The RGB stream is used to extract features from the RGB image to find the forged traces; the noise stream uses the filtering layer of the SRM (Steganalysis Rich Model) model to extract the noise features and find the inconsistency between the noise in the real region and the forged region in the fake face, then the features of the two streams are fused with a bilinear pooling layer to predict the forged region, and finally the forged region is determined by whether the blending boundary of the forged image is displayed to determine the image authenticity. Experiments conducted on four benchmark datasets show that our model is still effective against forgeries generated by unknown face manipulation methods, and also demonstrate the superior generalisation capability of our model.","PeriodicalId":103293,"journal":{"name":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Face Forgery Detection Method Based on Augmented Dual-Stream Networks\",\"authors\":\"Yumei Liu, Yong Zhang, Weiran Liu\",\"doi\":\"10.1145/3573942.3574030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current face forgery methods based on deep learning are becoming more mature and abundant, and existing detection techniques have some limitations and applicability issues that make it difficult to effectively detect such behaviour. In this paper, we propose an enhanced dual-stream FC_2_stream network model based on dual-stream networks to detect forged regions in manipulated face images through end-to-end training of the images. The RGB stream is used to extract features from the RGB image to find the forged traces; the noise stream uses the filtering layer of the SRM (Steganalysis Rich Model) model to extract the noise features and find the inconsistency between the noise in the real region and the forged region in the fake face, then the features of the two streams are fused with a bilinear pooling layer to predict the forged region, and finally the forged region is determined by whether the blending boundary of the forged image is displayed to determine the image authenticity. Experiments conducted on four benchmark datasets show that our model is still effective against forgeries generated by unknown face manipulation methods, and also demonstrate the superior generalisation capability of our model.\",\"PeriodicalId\":103293,\"journal\":{\"name\":\"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3573942.3574030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573942.3574030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前基于深度学习的人脸伪造方法日趋成熟和丰富,现有的检测技术存在一定的局限性和适用性问题,难以有效检测出人脸伪造行为。在本文中,我们提出了一种基于双流网络的增强双流FC_2_stream网络模型,通过对被操纵的人脸图像进行端到端训练来检测伪造区域。利用RGB流从RGB图像中提取特征,查找伪造痕迹;噪声流使用SRM (Steganalysis Rich Model)模型的滤波层提取噪声特征,发现假人脸真实区域和伪造区域的噪声不一致,然后用双线性池化层将两流特征融合预测伪造区域,最后通过伪造图像的混合边界是否显示来确定伪造区域,以确定图像的真实性。在四个基准数据集上进行的实验表明,我们的模型仍然有效地对抗未知人脸操纵方法产生的伪造,并且也证明了我们的模型具有优越的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Face Forgery Detection Method Based on Augmented Dual-Stream Networks
The current face forgery methods based on deep learning are becoming more mature and abundant, and existing detection techniques have some limitations and applicability issues that make it difficult to effectively detect such behaviour. In this paper, we propose an enhanced dual-stream FC_2_stream network model based on dual-stream networks to detect forged regions in manipulated face images through end-to-end training of the images. The RGB stream is used to extract features from the RGB image to find the forged traces; the noise stream uses the filtering layer of the SRM (Steganalysis Rich Model) model to extract the noise features and find the inconsistency between the noise in the real region and the forged region in the fake face, then the features of the two streams are fused with a bilinear pooling layer to predict the forged region, and finally the forged region is determined by whether the blending boundary of the forged image is displayed to determine the image authenticity. Experiments conducted on four benchmark datasets show that our model is still effective against forgeries generated by unknown face manipulation methods, and also demonstrate the superior generalisation capability of our model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model Lightweight Method for Object Detection Incremental Encoding Transformer Incorporating Common-sense Awareness for Conversational Sentiment Recognition Non-intrusive Automatic 3D Gaze Ground-truth System Fiber Optic Gyroscope Random Error Modeling Based on Improved Kalman Filtering Channel Modeling of Spaceborne Multiwavelet Packet OFDM System Based on CWGAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1