加速支持向量机的概念边界检测

Navneet Panda, E. Chang, Gang Wu
{"title":"加速支持向量机的概念边界检测","authors":"Navneet Panda, E. Chang, Gang Wu","doi":"10.1145/1143844.1143930","DOIUrl":null,"url":null,"abstract":"Support Vector Machines (SVMs) suffer from an O(n2) training cost, where n denotes the number of training instances. In this paper, we propose an algorithm to select boundary instances as training data to substantially reduce n. Our proposed algorithm is motivated by the result of (Burges, 1999) that, removing non-support vectors from the training set does not change SVM training results. Our algorithm eliminates instances that are likely to be non-support vectors. In the concept-independent preprocessing step of our algorithm, we prepare nearest-neighbor lists for training instances. In the concept-specific sampling step, we can then effectively select useful training data for each target concept. Empirical studies show our algorithm to be effective in reducing n, outperforming other competing downsampling algorithms without significantly compromising testing accuracy.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Concept boundary detection for speeding up SVMs\",\"authors\":\"Navneet Panda, E. Chang, Gang Wu\",\"doi\":\"10.1145/1143844.1143930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support Vector Machines (SVMs) suffer from an O(n2) training cost, where n denotes the number of training instances. In this paper, we propose an algorithm to select boundary instances as training data to substantially reduce n. Our proposed algorithm is motivated by the result of (Burges, 1999) that, removing non-support vectors from the training set does not change SVM training results. Our algorithm eliminates instances that are likely to be non-support vectors. In the concept-independent preprocessing step of our algorithm, we prepare nearest-neighbor lists for training instances. In the concept-specific sampling step, we can then effectively select useful training data for each target concept. Empirical studies show our algorithm to be effective in reducing n, outperforming other competing downsampling algorithms without significantly compromising testing accuracy.\",\"PeriodicalId\":124011,\"journal\":{\"name\":\"Proceedings of the 23rd international conference on Machine learning\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd international conference on Machine learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1143844.1143930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

支持向量机(svm)的训练成本为O(n2),其中n表示训练实例的数量。在本文中,我们提出了一种选择边界实例作为训练数据的算法,以大幅减少n。我们提出的算法的动机是(Burges, 1999)的结果,即从训练集中删除非支持向量不会改变SVM的训练结果。我们的算法消除了可能是非支持向量的实例。在与概念无关的预处理步骤中,我们为训练实例准备了最近邻列表。在特定于概念的采样步骤中,我们可以有效地为每个目标概念选择有用的训练数据。实证研究表明,我们的算法在减少n方面是有效的,优于其他竞争的下采样算法,而不会显著影响测试精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Concept boundary detection for speeding up SVMs
Support Vector Machines (SVMs) suffer from an O(n2) training cost, where n denotes the number of training instances. In this paper, we propose an algorithm to select boundary instances as training data to substantially reduce n. Our proposed algorithm is motivated by the result of (Burges, 1999) that, removing non-support vectors from the training set does not change SVM training results. Our algorithm eliminates instances that are likely to be non-support vectors. In the concept-independent preprocessing step of our algorithm, we prepare nearest-neighbor lists for training instances. In the concept-specific sampling step, we can then effectively select useful training data for each target concept. Empirical studies show our algorithm to be effective in reducing n, outperforming other competing downsampling algorithms without significantly compromising testing accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On a theory of learning with similarity functions Bayesian learning of measurement and structural models Predictive search distributions Data association for topic intensity tracking Feature value acquisition in testing: a sequential batch test algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1