弹性调节元件液压装置的研制

E. G. Berestovitsky, Y. F. Gladilin, N. Pyalov
{"title":"弹性调节元件液压装置的研制","authors":"E. G. Berestovitsky, Y. F. Gladilin, N. Pyalov","doi":"10.18287/2541-7533-2023-22-2-33-41","DOIUrl":null,"url":null,"abstract":"Currently, when creating the actuators of deep-sea vehicles and other technical facilities, there is a tendency to accommodate the elements of the hydraulic drive outside the durable housing. Such hydraulic systems are subject to the risk of depressurization, which leads to the ingress of working fluid (mineral oils or synthetic working fluids) into seawater and flooding of the hydraulic system's working fluid with seawater. The ingress of the working fluid into seawater leads to the violation of environmental safety, and if seawater enters the internal cavities of the hydraulic system, they may be damaged, which will require long and expensive repair in the future. One of the possible ways to eliminate the listed consequences of depressurization of outboard hydraulic systems is the creation of hydraulic equipment using seawater as a working fluid. The cheapest design of such a regulatory body is the use of shut-off valves with elastic tubular control elements. The research carried out confirmed the possibility of creating low-noise regulators with elastic control elements. These regulators have better vibroacoustic characteristics than spool-type throttles with similar functional characteristics. Preservation of the operating characteristics of regulators with elastic regulating elements when working with working fluids of different viscosities (PGV liquid, mineral oil, tap water) was confirmed. Survivability of a regulator with elastic control elements during long-term tests was confirmed. As a result of the work carried out, research and technological groundwork was obtained that allows creating a device with elastic regulating elements, having a flow differential characteristic that meets modern requirements, a vibroacoustic characteristic that meets advanced requirements and sufficient reliability when working on clean working fluids.","PeriodicalId":265584,"journal":{"name":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of hydraulic devices with elastic regulating elements\",\"authors\":\"E. G. Berestovitsky, Y. F. Gladilin, N. Pyalov\",\"doi\":\"10.18287/2541-7533-2023-22-2-33-41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, when creating the actuators of deep-sea vehicles and other technical facilities, there is a tendency to accommodate the elements of the hydraulic drive outside the durable housing. Such hydraulic systems are subject to the risk of depressurization, which leads to the ingress of working fluid (mineral oils or synthetic working fluids) into seawater and flooding of the hydraulic system's working fluid with seawater. The ingress of the working fluid into seawater leads to the violation of environmental safety, and if seawater enters the internal cavities of the hydraulic system, they may be damaged, which will require long and expensive repair in the future. One of the possible ways to eliminate the listed consequences of depressurization of outboard hydraulic systems is the creation of hydraulic equipment using seawater as a working fluid. The cheapest design of such a regulatory body is the use of shut-off valves with elastic tubular control elements. The research carried out confirmed the possibility of creating low-noise regulators with elastic control elements. These regulators have better vibroacoustic characteristics than spool-type throttles with similar functional characteristics. Preservation of the operating characteristics of regulators with elastic regulating elements when working with working fluids of different viscosities (PGV liquid, mineral oil, tap water) was confirmed. Survivability of a regulator with elastic control elements during long-term tests was confirmed. As a result of the work carried out, research and technological groundwork was obtained that allows creating a device with elastic regulating elements, having a flow differential characteristic that meets modern requirements, a vibroacoustic characteristic that meets advanced requirements and sufficient reliability when working on clean working fluids.\",\"PeriodicalId\":265584,\"journal\":{\"name\":\"VESTNIK of Samara University. Aerospace and Mechanical Engineering\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VESTNIK of Samara University. Aerospace and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2541-7533-2023-22-2-33-41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2541-7533-2023-22-2-33-41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,在制造深海车辆和其他技术设施的执行器时,有一种趋势是将液压驱动元件安装在耐用外壳之外。这种液压系统存在减压风险,这会导致工作流体(矿物油或合成工作流体)进入海水中,并使液压系统的工作流体被海水淹没。工作流体进入海水导致违反环境安全,如果海水进入液压系统的内腔,可能会损坏液压系统,这将需要长期和昂贵的维修。消除舷外液压系统降压所带来的后果的一种可能方法是使用海水作为工作流体的液压设备。这种调节机构最便宜的设计是使用带有弹性管状控制元件的截止阀。研究证实了用弹性控制元件制造低噪声调节器的可能性。与具有相似功能特性的阀芯式节流阀相比,这些调节阀具有更好的振动声学特性。证实了弹性调节元件在不同粘度的工质(PGV液、矿物油、自来水)下工作时保持了调节器的工作特性。验证了弹性控制元件调节器在长期试验中的生存能力。通过这些工作,我们获得了研究和技术基础,可以创建一种具有弹性调节元件的设备,该设备具有满足现代要求的流差特性,满足先进要求的振动声学特性,并且在清洁工作流体中具有足够的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of hydraulic devices with elastic regulating elements
Currently, when creating the actuators of deep-sea vehicles and other technical facilities, there is a tendency to accommodate the elements of the hydraulic drive outside the durable housing. Such hydraulic systems are subject to the risk of depressurization, which leads to the ingress of working fluid (mineral oils or synthetic working fluids) into seawater and flooding of the hydraulic system's working fluid with seawater. The ingress of the working fluid into seawater leads to the violation of environmental safety, and if seawater enters the internal cavities of the hydraulic system, they may be damaged, which will require long and expensive repair in the future. One of the possible ways to eliminate the listed consequences of depressurization of outboard hydraulic systems is the creation of hydraulic equipment using seawater as a working fluid. The cheapest design of such a regulatory body is the use of shut-off valves with elastic tubular control elements. The research carried out confirmed the possibility of creating low-noise regulators with elastic control elements. These regulators have better vibroacoustic characteristics than spool-type throttles with similar functional characteristics. Preservation of the operating characteristics of regulators with elastic regulating elements when working with working fluids of different viscosities (PGV liquid, mineral oil, tap water) was confirmed. Survivability of a regulator with elastic control elements during long-term tests was confirmed. As a result of the work carried out, research and technological groundwork was obtained that allows creating a device with elastic regulating elements, having a flow differential characteristic that meets modern requirements, a vibroacoustic characteristic that meets advanced requirements and sufficient reliability when working on clean working fluids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental analysis of instability and self-oscillations in an electrohydraulic servo drive Reliability-oriented design of PCM thermodimensionally stable space structures Method of first-approximation calculation of take-off weight of a light aircraft with a hybrid propulsion system The relevance of introducing a requirements management system in the production process of the aircraft engine construction industry Forecasting the parameters of performance monitoring of complex technical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1