lpd - ec:一种轻量级的边缘计算隐私保护数据聚合方案

Jiale Zhang, Yanchao Zhao, Jie Wu, Bing Chen
{"title":"lpd - ec:一种轻量级的边缘计算隐私保护数据聚合方案","authors":"Jiale Zhang, Yanchao Zhao, Jie Wu, Bing Chen","doi":"10.1109/MASS.2018.00024","DOIUrl":null,"url":null,"abstract":"Edge computing has emerged as the key enabling technology that empowers the IoT with intelligence and efficiency. In this data enriched infrastructure, privacy-preserving data aggregation (PPDA) is one of the most critical services. However, the security and privacy-preserving requirements and online computational cost still present practical concerns in edge computing for resource-constraint edge terminals. To cope with this challenge, we present a lightweight privacy-preserving data aggregation scheme named LPDA-EC for edge computing system by employing the online/offline signature technique, Paillier homomorphic cryptosystem, and double trapdoor Chameleon hash function in this paper. The proposed LPDA-EC scheme can achieve data confidentiality and privacy-preserving, ensuring that the edge server and control center are agnostic of the user's private information during the whole aggregation process. Through detailed analysis, we demonstrate that our scheme is existentially unforgeable under chosen message attack (EU-CMA) and ensures data integrity with formal proofs under q-Strong Diffie-Hellman (q-SDH) assumptions. Numerical results indicate that the LPDA-EC scheme has less computational and communication overheads.","PeriodicalId":146214,"journal":{"name":"2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"LPDA-EC: A Lightweight Privacy-Preserving Data Aggregation Scheme for Edge Computing\",\"authors\":\"Jiale Zhang, Yanchao Zhao, Jie Wu, Bing Chen\",\"doi\":\"10.1109/MASS.2018.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge computing has emerged as the key enabling technology that empowers the IoT with intelligence and efficiency. In this data enriched infrastructure, privacy-preserving data aggregation (PPDA) is one of the most critical services. However, the security and privacy-preserving requirements and online computational cost still present practical concerns in edge computing for resource-constraint edge terminals. To cope with this challenge, we present a lightweight privacy-preserving data aggregation scheme named LPDA-EC for edge computing system by employing the online/offline signature technique, Paillier homomorphic cryptosystem, and double trapdoor Chameleon hash function in this paper. The proposed LPDA-EC scheme can achieve data confidentiality and privacy-preserving, ensuring that the edge server and control center are agnostic of the user's private information during the whole aggregation process. Through detailed analysis, we demonstrate that our scheme is existentially unforgeable under chosen message attack (EU-CMA) and ensures data integrity with formal proofs under q-Strong Diffie-Hellman (q-SDH) assumptions. Numerical results indicate that the LPDA-EC scheme has less computational and communication overheads.\",\"PeriodicalId\":146214,\"journal\":{\"name\":\"2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASS.2018.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASS.2018.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

边缘计算已经成为赋予物联网智能和效率的关键使能技术。在这个数据丰富的基础设施中,保护隐私的数据聚合(PPDA)是最关键的服务之一。然而,对于资源受限的边缘终端,安全、隐私保护要求和在线计算成本仍然是边缘计算的现实问题。为了应对这一挑战,本文采用在线/离线签名技术、Paillier同态密码系统和双活板门变色龙哈希函数,提出了一种轻量级的边缘计算系统隐私保护数据聚合方案LPDA-EC。提出的lpd - ec方案可以实现数据的保密性和隐私性,保证边缘服务器和控制中心在整个聚合过程中对用户的隐私信息不可知。通过详细的分析,我们证明了我们的方案在选择消息攻击(EU-CMA)下是存在不可伪造的,并在q-Strong Diffie-Hellman (q-SDH)假设下通过形式化证明保证了数据的完整性。数值结果表明,lda - ec方案具有较小的计算开销和通信开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LPDA-EC: A Lightweight Privacy-Preserving Data Aggregation Scheme for Edge Computing
Edge computing has emerged as the key enabling technology that empowers the IoT with intelligence and efficiency. In this data enriched infrastructure, privacy-preserving data aggregation (PPDA) is one of the most critical services. However, the security and privacy-preserving requirements and online computational cost still present practical concerns in edge computing for resource-constraint edge terminals. To cope with this challenge, we present a lightweight privacy-preserving data aggregation scheme named LPDA-EC for edge computing system by employing the online/offline signature technique, Paillier homomorphic cryptosystem, and double trapdoor Chameleon hash function in this paper. The proposed LPDA-EC scheme can achieve data confidentiality and privacy-preserving, ensuring that the edge server and control center are agnostic of the user's private information during the whole aggregation process. Through detailed analysis, we demonstrate that our scheme is existentially unforgeable under chosen message attack (EU-CMA) and ensures data integrity with formal proofs under q-Strong Diffie-Hellman (q-SDH) assumptions. Numerical results indicate that the LPDA-EC scheme has less computational and communication overheads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning Based Urban Post-Accidental Congestion Prediction BF-IoT: Securing the IoT Networks via Fingerprinting-Based Device Authentication Achieving Energy Efficiency Through Dynamic Computing Offloading in Mobile Edge-Clouds A Fusion Method of Multiple Sensors Data on Panorama Video for Airport Surface Surveillance Theoretical Round Modification Fault Analysis on AEGIS-128 with Algebraic Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1