识别低功耗蓝牙设备

Daniel Nilsson, Wenqing Yan
{"title":"识别低功耗蓝牙设备","authors":"Daniel Nilsson, Wenqing Yan","doi":"10.1145/3485730.3492880","DOIUrl":null,"url":null,"abstract":"Physical-layer identification using hardware imperfections, known as radiometric fingerprinting, has existed for some time, but little focus has been put on Bluetooth Low Energy (BLE). This work systematically explores features for physical-layer identification of BLE. We evaluate the fingerprinting performance on different feature sets, and we discuss the potential issues with the robustness that may arise in a practical environment. Accuracy results are achieved in excess of 99%, showing potential for the system to work in security settings to safeguard a Bluetooth network.","PeriodicalId":356322,"journal":{"name":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identifying Bluetooth Low Energy Devices\",\"authors\":\"Daniel Nilsson, Wenqing Yan\",\"doi\":\"10.1145/3485730.3492880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical-layer identification using hardware imperfections, known as radiometric fingerprinting, has existed for some time, but little focus has been put on Bluetooth Low Energy (BLE). This work systematically explores features for physical-layer identification of BLE. We evaluate the fingerprinting performance on different feature sets, and we discuss the potential issues with the robustness that may arise in a practical environment. Accuracy results are achieved in excess of 99%, showing potential for the system to work in security settings to safeguard a Bluetooth network.\",\"PeriodicalId\":356322,\"journal\":{\"name\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3485730.3492880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485730.3492880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用硬件缺陷进行物理层识别,即辐射指纹识别,已经存在了一段时间,但对低功耗蓝牙(BLE)的关注却很少。本工作系统地探讨了BLE物理层识别的特征。我们评估了指纹识别在不同特征集上的性能,并讨论了在实际环境中可能出现的鲁棒性潜在问题。准确度达到99%以上,显示出系统在安全设置中工作以保护蓝牙网络的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying Bluetooth Low Energy Devices
Physical-layer identification using hardware imperfections, known as radiometric fingerprinting, has existed for some time, but little focus has been put on Bluetooth Low Energy (BLE). This work systematically explores features for physical-layer identification of BLE. We evaluate the fingerprinting performance on different feature sets, and we discuss the potential issues with the robustness that may arise in a practical environment. Accuracy results are achieved in excess of 99%, showing potential for the system to work in security settings to safeguard a Bluetooth network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Video Transmission Strategy Based on Ising Machine Wavoice: A Noise-resistant Multi-modal Speech Recognition System Fusing mmWave and Audio Signals Experimental Scalability Study of Consortium Blockchains with BFT Consensus for IoT Automotive Use Case MoRe-Fi: Motion-robust and Fine-grained Respiration Monitoring via Deep-Learning UWB Radar FedMask
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1