{"title":"基于分层条件随机场注意机制的胃组织病理学图像智能分类","authors":"Yixin Li, Xinran Wu, Chen Li, Changhao Sun, Xiaoyan Li, M. Rahaman, Yong Zhang","doi":"10.1145/3457682.3457733","DOIUrl":null,"url":null,"abstract":"In this paper, an Intelligent Hierarchical Conditional Random Field based Attention Mechanism (HCRF-AM) model is proposed, which can be applied to the Gastric Histopathology Image Classification (GHIC) tasks to assist pathologists in medical diagnosis. However, there exists redundant information in a weakly supervised learning mission. Thus, designing the network that can extract effective distinguishing features has become the focus of research. The HCRF-AM model consists of attention mechanism (AM) module and image classification (IC) module. First, in the AM module, an HCRF model is built to extract attention areas. Then, a convolutional neural network (CNN) model is trained with the attention region selected. Thirdly, an algorithm called classification probability based Ensemble Learning (EL) is used to obtain the image-level result from patch-level output of the CNN. In the experiment, a classification specificity of 96.67% is achieved on a gastric histopathological dataset with 700 images.","PeriodicalId":142045,"journal":{"name":"2021 13th International Conference on Machine Learning and Computing","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Intelligent Gastric Histopathology Image Classification Using Hierarchical Conditional Random Field based Attention Mechanism\",\"authors\":\"Yixin Li, Xinran Wu, Chen Li, Changhao Sun, Xiaoyan Li, M. Rahaman, Yong Zhang\",\"doi\":\"10.1145/3457682.3457733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an Intelligent Hierarchical Conditional Random Field based Attention Mechanism (HCRF-AM) model is proposed, which can be applied to the Gastric Histopathology Image Classification (GHIC) tasks to assist pathologists in medical diagnosis. However, there exists redundant information in a weakly supervised learning mission. Thus, designing the network that can extract effective distinguishing features has become the focus of research. The HCRF-AM model consists of attention mechanism (AM) module and image classification (IC) module. First, in the AM module, an HCRF model is built to extract attention areas. Then, a convolutional neural network (CNN) model is trained with the attention region selected. Thirdly, an algorithm called classification probability based Ensemble Learning (EL) is used to obtain the image-level result from patch-level output of the CNN. In the experiment, a classification specificity of 96.67% is achieved on a gastric histopathological dataset with 700 images.\",\"PeriodicalId\":142045,\"journal\":{\"name\":\"2021 13th International Conference on Machine Learning and Computing\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3457682.3457733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457682.3457733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
本文提出了一种基于智能分层条件随机场的注意机制(HCRF-AM)模型,该模型可用于胃组织病理学图像分类(GHIC)任务,以辅助病理医师进行医学诊断。然而,弱监督学习任务中存在冗余信息。因此,设计能够有效提取识别特征的网络成为研究的重点。HCRF-AM模型包括注意机制(AM)模块和图像分类(IC)模块。首先,在AM模块中,建立HCRF模型提取注意区域。然后,用选择的注意区域训练卷积神经网络(CNN)模型。第三,采用基于分类概率的集成学习(classification probability based Ensemble Learning, EL)算法,从CNN的patch级输出中获得图像级结果。在实验中,对700张胃组织病理学数据集的分类特异性达到96.67%。
Intelligent Gastric Histopathology Image Classification Using Hierarchical Conditional Random Field based Attention Mechanism
In this paper, an Intelligent Hierarchical Conditional Random Field based Attention Mechanism (HCRF-AM) model is proposed, which can be applied to the Gastric Histopathology Image Classification (GHIC) tasks to assist pathologists in medical diagnosis. However, there exists redundant information in a weakly supervised learning mission. Thus, designing the network that can extract effective distinguishing features has become the focus of research. The HCRF-AM model consists of attention mechanism (AM) module and image classification (IC) module. First, in the AM module, an HCRF model is built to extract attention areas. Then, a convolutional neural network (CNN) model is trained with the attention region selected. Thirdly, an algorithm called classification probability based Ensemble Learning (EL) is used to obtain the image-level result from patch-level output of the CNN. In the experiment, a classification specificity of 96.67% is achieved on a gastric histopathological dataset with 700 images.