C. Bessiere, E. Bouyakhf, Younes Mechqrane, M. Wahbi
{"title":"分布式约束满足问题的敏捷异步回溯","authors":"C. Bessiere, E. Bouyakhf, Younes Mechqrane, M. Wahbi","doi":"10.1109/ICTAI.2011.122","DOIUrl":null,"url":null,"abstract":"Asynchronous Backtracking is the standard search procedure for distributed constraint reasoning. It requires a total ordering on the agents. All polynomial space algorithms proposed so far to improve Asynchronous Backtracking by reordering agents during search only allow a limited amount of reordering. In this paper, we propose Agile-ABT, a search procedure that is able to change the ordering of agents more than previous approaches. This is done via the original notion of termination value, a vector of stamps labelling the new orders exchanged by agents during search. In Agile-ABT, agents can reorder themselves as much as they want as long as the termination value decreases as the search progresses. Our experiments show the good performance of Agile-ABT when compared to other dynamic reordering techniques.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Agile Asynchronous Backtracking for Distributed Constraint Satisfaction Problems\",\"authors\":\"C. Bessiere, E. Bouyakhf, Younes Mechqrane, M. Wahbi\",\"doi\":\"10.1109/ICTAI.2011.122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asynchronous Backtracking is the standard search procedure for distributed constraint reasoning. It requires a total ordering on the agents. All polynomial space algorithms proposed so far to improve Asynchronous Backtracking by reordering agents during search only allow a limited amount of reordering. In this paper, we propose Agile-ABT, a search procedure that is able to change the ordering of agents more than previous approaches. This is done via the original notion of termination value, a vector of stamps labelling the new orders exchanged by agents during search. In Agile-ABT, agents can reorder themselves as much as they want as long as the termination value decreases as the search progresses. Our experiments show the good performance of Agile-ABT when compared to other dynamic reordering techniques.\",\"PeriodicalId\":332661,\"journal\":{\"name\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2011.122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Agile Asynchronous Backtracking for Distributed Constraint Satisfaction Problems
Asynchronous Backtracking is the standard search procedure for distributed constraint reasoning. It requires a total ordering on the agents. All polynomial space algorithms proposed so far to improve Asynchronous Backtracking by reordering agents during search only allow a limited amount of reordering. In this paper, we propose Agile-ABT, a search procedure that is able to change the ordering of agents more than previous approaches. This is done via the original notion of termination value, a vector of stamps labelling the new orders exchanged by agents during search. In Agile-ABT, agents can reorder themselves as much as they want as long as the termination value decreases as the search progresses. Our experiments show the good performance of Agile-ABT when compared to other dynamic reordering techniques.