分析教学视频中的讨论场景内容

Y. Li, C. Dorai
{"title":"分析教学视频中的讨论场景内容","authors":"Y. Li, C. Dorai","doi":"10.1145/1027527.1027587","DOIUrl":null,"url":null,"abstract":"This paper describes our current effort on analyzing the contents of discussion scenes in instructional videos based on a clustering technique. Specifically, given a discussion scene pre-detected from an education or training video, we first apply a mode-based clustering approach to group all speech segments into an optimal number of clusters where each cluster contains speech from one speaker; we then analyze the discussion patterns in the scene, and subsequently classify it into either a 2-speaker or multi-speaker discussion. Encouraging classification results have been achieved on 122 discussion scenes detected from five IBM MicroMBA videos. Moreover, we have also observed fairly good performance on the speaker clustering scheme, which demonstrates the superiority of the proposed clustering approach. Undoubtedly, the discussion scene information output from this analysis scheme would facilitate the content browsing, searching and understanding of instructional videos.","PeriodicalId":292207,"journal":{"name":"MULTIMEDIA '04","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Analyzing discussion scene contents in instructional videos\",\"authors\":\"Y. Li, C. Dorai\",\"doi\":\"10.1145/1027527.1027587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes our current effort on analyzing the contents of discussion scenes in instructional videos based on a clustering technique. Specifically, given a discussion scene pre-detected from an education or training video, we first apply a mode-based clustering approach to group all speech segments into an optimal number of clusters where each cluster contains speech from one speaker; we then analyze the discussion patterns in the scene, and subsequently classify it into either a 2-speaker or multi-speaker discussion. Encouraging classification results have been achieved on 122 discussion scenes detected from five IBM MicroMBA videos. Moreover, we have also observed fairly good performance on the speaker clustering scheme, which demonstrates the superiority of the proposed clustering approach. Undoubtedly, the discussion scene information output from this analysis scheme would facilitate the content browsing, searching and understanding of instructional videos.\",\"PeriodicalId\":292207,\"journal\":{\"name\":\"MULTIMEDIA '04\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MULTIMEDIA '04\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1027527.1027587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1027527.1027587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了基于聚类技术的教学视频讨论场景内容分析的研究现状。具体来说,给定从教育或培训视频中预先检测到的讨论场景,我们首先应用基于模式的聚类方法将所有语音片段分组到最优数量的聚类中,其中每个聚类包含来自一个说话者的语音;然后,我们分析了场景中的讨论模式,并随后将其分类为两个人或多个人的讨论。从5个IBM MicroMBA视频中检测到的122个讨论场景取得了令人鼓舞的分类结果。此外,我们还观察到说话人聚类方案具有相当好的性能,这证明了所提出的聚类方法的优越性。毫无疑问,该分析方案输出的讨论场景信息将有利于教学视频的内容浏览、搜索和理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing discussion scene contents in instructional videos
This paper describes our current effort on analyzing the contents of discussion scenes in instructional videos based on a clustering technique. Specifically, given a discussion scene pre-detected from an education or training video, we first apply a mode-based clustering approach to group all speech segments into an optimal number of clusters where each cluster contains speech from one speaker; we then analyze the discussion patterns in the scene, and subsequently classify it into either a 2-speaker or multi-speaker discussion. Encouraging classification results have been achieved on 122 discussion scenes detected from five IBM MicroMBA videos. Moreover, we have also observed fairly good performance on the speaker clustering scheme, which demonstrates the superiority of the proposed clustering approach. Undoubtedly, the discussion scene information output from this analysis scheme would facilitate the content browsing, searching and understanding of instructional videos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Context for semantic metadata Collusion attack on a multi-key secure video proxy scheme PLSA-based image auto-annotation: constraining the latent space The relative effectiveness of concept-based versus content-based video retrieval LEMUR: robotic musical instruments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1