象限距离图:一种可视化神经网络权重空间的方法

B. Linnell
{"title":"象限距离图:一种可视化神经网络权重空间的方法","authors":"B. Linnell","doi":"10.1109/IJCNN.1999.832624","DOIUrl":null,"url":null,"abstract":"One of the major drawbacks to neural networks is the inability of the user to understand what is happening inside the network. Quadrant-distance (QD) graphs allow the user to graphically display a network's weight vector at any point in training, for networks of any size. This allows the user to quickly and easily identify similarities or differences between solution sets. QD graphs may also be used for a variety of other analysis functions, such as comparing initial weights to final weights, and observing the path of the network as it finds a solution.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quadrant-distance graphs: a method for visualizing neural network weight spaces\",\"authors\":\"B. Linnell\",\"doi\":\"10.1109/IJCNN.1999.832624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the major drawbacks to neural networks is the inability of the user to understand what is happening inside the network. Quadrant-distance (QD) graphs allow the user to graphically display a network's weight vector at any point in training, for networks of any size. This allows the user to quickly and easily identify similarities or differences between solution sets. QD graphs may also be used for a variety of other analysis functions, such as comparing initial weights to final weights, and observing the path of the network as it finds a solution.\",\"PeriodicalId\":157719,\"journal\":{\"name\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1999.832624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.832624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

神经网络的主要缺点之一是用户无法理解网络内部发生的事情。对于任何大小的网络,象限距离(QD)图允许用户在训练的任何点以图形方式显示网络的权重向量。这允许用户快速轻松地识别解决方案集之间的相似性或差异性。QD图还可以用于各种其他分析功能,例如比较初始权重和最终权重,以及在网络找到解决方案时观察网络的路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quadrant-distance graphs: a method for visualizing neural network weight spaces
One of the major drawbacks to neural networks is the inability of the user to understand what is happening inside the network. Quadrant-distance (QD) graphs allow the user to graphically display a network's weight vector at any point in training, for networks of any size. This allows the user to quickly and easily identify similarities or differences between solution sets. QD graphs may also be used for a variety of other analysis functions, such as comparing initial weights to final weights, and observing the path of the network as it finds a solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting human cortical connectivity for language areas using the Conel database Identification of nonlinear dynamic systems by using probabilistic universal learning networks Knowledge processing system using chaotic associative memory Computer-aided diagnosis of breast cancer using artificial neural networks: comparison of backpropagation and genetic algorithms A versatile framework for labelling imagery with a large number of classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1