Lisa Petani, Dennis Wickersheim, L. Koker, M. Reischl, U. Gengenbach, C. Pylatiuk
{"title":"医用臭氧气体传感器评价的实验装置","authors":"Lisa Petani, Dennis Wickersheim, L. Koker, M. Reischl, U. Gengenbach, C. Pylatiuk","doi":"10.1109/SAS54819.2022.9881340","DOIUrl":null,"url":null,"abstract":"Medical gases, such as ozone, are increasingly used for treatment of chronic wounds and herniated disks. For the further establishment in clinical routine, the in-vivo ozone concentration in the wound or disk has to be measured before, during, and after therapy. We present an experimental setup to monitor the ozone gas concentration in a measurement chamber. With the experimental setup, we enable a comparison between commercial sensors and, for example, new types of inkjet-printed sensors for ozone concentrations up to 1000 ppm. Thereby, new sensors can be calibrated, evaluated, and characterised. As the first application of this setup, we evaluated screen-printed sensors. This establishes a foundation for the broad, safe application and further research of ozone therapy.","PeriodicalId":129732,"journal":{"name":"2022 IEEE Sensors Applications Symposium (SAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Setup for Evaluation of Medical Ozone Gas Sensors\",\"authors\":\"Lisa Petani, Dennis Wickersheim, L. Koker, M. Reischl, U. Gengenbach, C. Pylatiuk\",\"doi\":\"10.1109/SAS54819.2022.9881340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical gases, such as ozone, are increasingly used for treatment of chronic wounds and herniated disks. For the further establishment in clinical routine, the in-vivo ozone concentration in the wound or disk has to be measured before, during, and after therapy. We present an experimental setup to monitor the ozone gas concentration in a measurement chamber. With the experimental setup, we enable a comparison between commercial sensors and, for example, new types of inkjet-printed sensors for ozone concentrations up to 1000 ppm. Thereby, new sensors can be calibrated, evaluated, and characterised. As the first application of this setup, we evaluated screen-printed sensors. This establishes a foundation for the broad, safe application and further research of ozone therapy.\",\"PeriodicalId\":129732,\"journal\":{\"name\":\"2022 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS54819.2022.9881340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS54819.2022.9881340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental Setup for Evaluation of Medical Ozone Gas Sensors
Medical gases, such as ozone, are increasingly used for treatment of chronic wounds and herniated disks. For the further establishment in clinical routine, the in-vivo ozone concentration in the wound or disk has to be measured before, during, and after therapy. We present an experimental setup to monitor the ozone gas concentration in a measurement chamber. With the experimental setup, we enable a comparison between commercial sensors and, for example, new types of inkjet-printed sensors for ozone concentrations up to 1000 ppm. Thereby, new sensors can be calibrated, evaluated, and characterised. As the first application of this setup, we evaluated screen-printed sensors. This establishes a foundation for the broad, safe application and further research of ozone therapy.