考虑战略重要性的关联规则发现:WARM

D. Choi
{"title":"考虑战略重要性的关联规则发现:WARM","authors":"D. Choi","doi":"10.3745/KIPSTD.2010.17D.4.311","DOIUrl":null,"url":null,"abstract":"This paper presents a weight adjusted association rule mining algorithm (WARM). Assigning weights to each strategic factor and normalizing raw scores within each strategic factor are the key ideas of the presented algorithm. It is an extension of the earlier algorithm TSAA (transitive support association Apriori) and strategic importance is reflected by considering factors such as profit, marketing value, and customer satisfaction of each item. Performance analysis based on a real world database has been made and comparison of the mining outcomes obtained from three association rule mining algorithms (Apriori, TSAA, and WARM) is provided. The result indicates that each algorithm gives distinct and characteristic behavior in association rule mining.","PeriodicalId":348746,"journal":{"name":"The Kips Transactions:partd","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association Rule Discovery Considering Strategic Importance: WARM\",\"authors\":\"D. Choi\",\"doi\":\"10.3745/KIPSTD.2010.17D.4.311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a weight adjusted association rule mining algorithm (WARM). Assigning weights to each strategic factor and normalizing raw scores within each strategic factor are the key ideas of the presented algorithm. It is an extension of the earlier algorithm TSAA (transitive support association Apriori) and strategic importance is reflected by considering factors such as profit, marketing value, and customer satisfaction of each item. Performance analysis based on a real world database has been made and comparison of the mining outcomes obtained from three association rule mining algorithms (Apriori, TSAA, and WARM) is provided. The result indicates that each algorithm gives distinct and characteristic behavior in association rule mining.\",\"PeriodicalId\":348746,\"journal\":{\"name\":\"The Kips Transactions:partd\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Kips Transactions:partd\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3745/KIPSTD.2010.17D.4.311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partd","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTD.2010.17D.4.311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种权重调整关联规则挖掘算法(WARM)。该算法的关键思想是为每个策略因子分配权重并对每个策略因子内的原始分数进行归一化。它是早期算法TSAA(传递支持关联Apriori)的扩展,通过考虑每个项目的利润、营销价值和客户满意度等因素来反映战略重要性。基于真实数据库进行了性能分析,并对三种关联规则挖掘算法(Apriori、TSAA和WARM)的挖掘结果进行了比较。结果表明,在关联规则挖掘中,每种算法都具有不同的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Association Rule Discovery Considering Strategic Importance: WARM
This paper presents a weight adjusted association rule mining algorithm (WARM). Assigning weights to each strategic factor and normalizing raw scores within each strategic factor are the key ideas of the presented algorithm. It is an extension of the earlier algorithm TSAA (transitive support association Apriori) and strategic importance is reflected by considering factors such as profit, marketing value, and customer satisfaction of each item. Performance analysis based on a real world database has been made and comparison of the mining outcomes obtained from three association rule mining algorithms (Apriori, TSAA, and WARM) is provided. The result indicates that each algorithm gives distinct and characteristic behavior in association rule mining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Web Document Classification Based on Hangeul Morpheme and Keyword Analyses Identification of the Extension Points of Design Patterns Based on Reference Flows A QoS-aware Service Selection Method for Configuring Web Service Composition TK-Indexing : An Indexing Method for SNS Data Based on NoSQL Analysis of Power Consumption for Embedded Software using UML State Machine Diagram
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1