规划未来连接低压配电网的电动汽车中央充电站

F. Marra, C. Traholt, E. Larsen
{"title":"规划未来连接低压配电网的电动汽车中央充电站","authors":"F. Marra, C. Traholt, E. Larsen","doi":"10.1109/PEDG.2012.6254069","DOIUrl":null,"url":null,"abstract":"A great interest is recently paid to Electric Vehicles (EV) and their integration into electricity grids. EV can potentially play an important role in power system operation, however, the EV charging infrastructures have been only partly defined, considering them as limited to individual charging points, randomly distributed into the networks. This paper addresses the planning of public central charging stations (CCS) that can be integrated in low-voltage (LV) networks for EV parallel charging. The concepts of AC and DC architectures of CCS are proposed and a comparison is given on their investment cost. Investigation on location and size of CCS is conducted, analyzing two LV grids of different capacity. The results enlighten that a public CCS should be preferably located in the range of 100 m from the transformer. The AC charging levels of 11 kW and 22 kW have the highest potential in LV grids. The option of DC fast-charging is only possible in the larger capacity grids, withstanding the parallel charge of one or two vehicles.","PeriodicalId":146438,"journal":{"name":"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Planning future electric vehicle central charging stations connected to low-voltage distribution networks\",\"authors\":\"F. Marra, C. Traholt, E. Larsen\",\"doi\":\"10.1109/PEDG.2012.6254069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A great interest is recently paid to Electric Vehicles (EV) and their integration into electricity grids. EV can potentially play an important role in power system operation, however, the EV charging infrastructures have been only partly defined, considering them as limited to individual charging points, randomly distributed into the networks. This paper addresses the planning of public central charging stations (CCS) that can be integrated in low-voltage (LV) networks for EV parallel charging. The concepts of AC and DC architectures of CCS are proposed and a comparison is given on their investment cost. Investigation on location and size of CCS is conducted, analyzing two LV grids of different capacity. The results enlighten that a public CCS should be preferably located in the range of 100 m from the transformer. The AC charging levels of 11 kW and 22 kW have the highest potential in LV grids. The option of DC fast-charging is only possible in the larger capacity grids, withstanding the parallel charge of one or two vehicles.\",\"PeriodicalId\":146438,\"journal\":{\"name\":\"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDG.2012.6254069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDG.2012.6254069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

最近,人们对电动汽车(EV)及其与电网的整合产生了极大的兴趣。电动汽车可能在电力系统运行中发挥重要作用,然而,电动汽车充电基础设施只被部分定义,认为它们仅限于单个充电点,随机分布在网络中。本文研究了可集成在低压电网中用于电动汽车并联充电的公共中心充电站(CCS)的规划。提出了交流和直流结构的概念,并对其投资成本进行了比较。通过对两种不同容量的低压电网进行分析,对CCS的位置和规模进行了调查。结果表明,公共CCS最好设置在距变压器100 m范围内。11千瓦和22千瓦的交流充电水平在低压电网中具有最高的电位。直流快速充电的选择只有在更大容量的电网中才有可能,可以承受一辆或两辆汽车的平行充电。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Planning future electric vehicle central charging stations connected to low-voltage distribution networks
A great interest is recently paid to Electric Vehicles (EV) and their integration into electricity grids. EV can potentially play an important role in power system operation, however, the EV charging infrastructures have been only partly defined, considering them as limited to individual charging points, randomly distributed into the networks. This paper addresses the planning of public central charging stations (CCS) that can be integrated in low-voltage (LV) networks for EV parallel charging. The concepts of AC and DC architectures of CCS are proposed and a comparison is given on their investment cost. Investigation on location and size of CCS is conducted, analyzing two LV grids of different capacity. The results enlighten that a public CCS should be preferably located in the range of 100 m from the transformer. The AC charging levels of 11 kW and 22 kW have the highest potential in LV grids. The option of DC fast-charging is only possible in the larger capacity grids, withstanding the parallel charge of one or two vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart — STATCOM control strategy implementation in wind power plants Common DC link in residential LV network to improve the penetration level of Small-Scale Embedded Generators Research on the reactive power optimization of distribution network including DG Use of petri nets for load sharing control in distributed generation applications Mega data center architecture under Smart Grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1