Wakako Sato, Yoshiki Tsuchida, Pengcheng Li, T. Hasegawa, Yoji Yamada, Y. Uchiyama
{"title":"识别辅助和阻力引导对使用智能助行器的老年人步态的影响","authors":"Wakako Sato, Yoshiki Tsuchida, Pengcheng Li, T. Hasegawa, Yoji Yamada, Y. Uchiyama","doi":"10.1109/ICORR.2019.8779556","DOIUrl":null,"url":null,"abstract":"Progression of technology has expanded applications of smart walkers in clinical fields. However, it is essential to investigate the effects of different types of gait guidance in order to introduce smart walkers more widely throughout these fields. The purpose of this study was to identify the effects of assistive and resistive guidance on the gait of elderly people using a smart walker. Gait parameters, surface electromyography of lower limb muscles, and trunk acceleration were measured. The assistive guidance force significantly increased gait speed, step length, and cadence while increasing trunk acceleration variability. The same amount of resistive guidance force did not change gait parameters; instead, however, it restrained the speed-dependent increase of trunk acceleration variability in the mediolateral direction. An analysis of muscle activity suggested that the lower limb muscle activity could be increased by varying gait parameters including speed, step length, and cadence.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Identifying the Effects of Assistive and Resistive Guidance on the Gait of Elderly People Using a Smart Walker\",\"authors\":\"Wakako Sato, Yoshiki Tsuchida, Pengcheng Li, T. Hasegawa, Yoji Yamada, Y. Uchiyama\",\"doi\":\"10.1109/ICORR.2019.8779556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Progression of technology has expanded applications of smart walkers in clinical fields. However, it is essential to investigate the effects of different types of gait guidance in order to introduce smart walkers more widely throughout these fields. The purpose of this study was to identify the effects of assistive and resistive guidance on the gait of elderly people using a smart walker. Gait parameters, surface electromyography of lower limb muscles, and trunk acceleration were measured. The assistive guidance force significantly increased gait speed, step length, and cadence while increasing trunk acceleration variability. The same amount of resistive guidance force did not change gait parameters; instead, however, it restrained the speed-dependent increase of trunk acceleration variability in the mediolateral direction. An analysis of muscle activity suggested that the lower limb muscle activity could be increased by varying gait parameters including speed, step length, and cadence.\",\"PeriodicalId\":130415,\"journal\":{\"name\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2019.8779556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2019.8779556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identifying the Effects of Assistive and Resistive Guidance on the Gait of Elderly People Using a Smart Walker
Progression of technology has expanded applications of smart walkers in clinical fields. However, it is essential to investigate the effects of different types of gait guidance in order to introduce smart walkers more widely throughout these fields. The purpose of this study was to identify the effects of assistive and resistive guidance on the gait of elderly people using a smart walker. Gait parameters, surface electromyography of lower limb muscles, and trunk acceleration were measured. The assistive guidance force significantly increased gait speed, step length, and cadence while increasing trunk acceleration variability. The same amount of resistive guidance force did not change gait parameters; instead, however, it restrained the speed-dependent increase of trunk acceleration variability in the mediolateral direction. An analysis of muscle activity suggested that the lower limb muscle activity could be increased by varying gait parameters including speed, step length, and cadence.