大数据驱动的在线预测控制数字生态系统框架

A. Suleykin, N. Bakhtadze, P. Panfilov
{"title":"大数据驱动的在线预测控制数字生态系统框架","authors":"A. Suleykin, N. Bakhtadze, P. Panfilov","doi":"10.1145/3415958.3433077","DOIUrl":null,"url":null,"abstract":"In this paper, Big-Data Driven Digital Ecosystem Framework (BDDDEF) for Online Predictive Control Systems is created. The proposed framework consists of different Agents, where each Agent is a distributed and virtual service. In our work, we provide solutions to the Big Data challenges in building Digital Ecosystems for Online Control including high volumes, velocity and variety of data, and the need for low data latency. We propose to use BDDDEF for building robust, reliable, fault-tolerant, scalable and high-loaded data pipelines for Online Predictive Control Systems. We review Big Data Main Systems for Online Predictive Control Architecture, review the literature for Digital Ecosystems design for Control Systems Online, design and describe main features, main architectural components and functional architecture of the framework, and finally, propose new Predictive Control methodology for Online Predictions.","PeriodicalId":198419,"journal":{"name":"Proceedings of the 12th International Conference on Management of Digital EcoSystems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Big-Data Driven Digital Ecosystem Framework for Online Predictive Control\",\"authors\":\"A. Suleykin, N. Bakhtadze, P. Panfilov\",\"doi\":\"10.1145/3415958.3433077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Big-Data Driven Digital Ecosystem Framework (BDDDEF) for Online Predictive Control Systems is created. The proposed framework consists of different Agents, where each Agent is a distributed and virtual service. In our work, we provide solutions to the Big Data challenges in building Digital Ecosystems for Online Control including high volumes, velocity and variety of data, and the need for low data latency. We propose to use BDDDEF for building robust, reliable, fault-tolerant, scalable and high-loaded data pipelines for Online Predictive Control Systems. We review Big Data Main Systems for Online Predictive Control Architecture, review the literature for Digital Ecosystems design for Control Systems Online, design and describe main features, main architectural components and functional architecture of the framework, and finally, propose new Predictive Control methodology for Online Predictions.\",\"PeriodicalId\":198419,\"journal\":{\"name\":\"Proceedings of the 12th International Conference on Management of Digital EcoSystems\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th International Conference on Management of Digital EcoSystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3415958.3433077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Conference on Management of Digital EcoSystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3415958.3433077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文建立了在线预测控制系统的大数据驱动数字生态系统框架(BDDDEF)。提出的框架由不同的Agent组成,其中每个Agent是一个分布式的虚拟服务。在我们的工作中,我们为构建在线控制数字生态系统中的大数据挑战提供解决方案,包括高容量、高速度和多种数据,以及对低数据延迟的需求。我们建议使用BDDDEF为在线预测控制系统构建鲁棒、可靠、容错、可扩展和高负载的数据管道。我们回顾了在线预测控制体系结构的大数据主要系统,回顾了在线控制系统数字生态系统设计的文献,设计并描述了框架的主要特征、主要架构组件和功能架构,最后提出了用于在线预测的新的预测控制方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Big-Data Driven Digital Ecosystem Framework for Online Predictive Control
In this paper, Big-Data Driven Digital Ecosystem Framework (BDDDEF) for Online Predictive Control Systems is created. The proposed framework consists of different Agents, where each Agent is a distributed and virtual service. In our work, we provide solutions to the Big Data challenges in building Digital Ecosystems for Online Control including high volumes, velocity and variety of data, and the need for low data latency. We propose to use BDDDEF for building robust, reliable, fault-tolerant, scalable and high-loaded data pipelines for Online Predictive Control Systems. We review Big Data Main Systems for Online Predictive Control Architecture, review the literature for Digital Ecosystems design for Control Systems Online, design and describe main features, main architectural components and functional architecture of the framework, and finally, propose new Predictive Control methodology for Online Predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Selection of Information Streams in Social Sensing: an Interdependence- and Cost-aware Ranking Method LEOnto Bot-Detective: An explainable Twitter bot detection service with crowdsourcing functionalities A Novel Framework for Event Interpretation in a Heterogeneous Information System Spatial Information Retrieval in Digital Ecosystems: A Comprehensive Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1