{"title":"3DVQA: 3D环境的视觉问答","authors":"Yasaman Etesam, Leon Kochiev, Angel X. Chang","doi":"10.1109/CRV55824.2022.00038","DOIUrl":null,"url":null,"abstract":"Visual Question Answering (VQA) is a widely studied problem in computer vision and natural language processing. However, current approaches to VQA have been investigated primarily in the 2D image domain. We study VQA in the 3D domain, with our input being point clouds of real-world 3D scenes, instead of 2D images. We believe that this 3D data modality provide richer spatial relation information that is of interest in the VQA task. In this paper, we introduce the 3DVQA-ScanNet dataset, the first VQA dataset in 3D, and we investigate the performance of a spectrum of baseline approaches on the 3D VQA task.","PeriodicalId":131142,"journal":{"name":"2022 19th Conference on Robots and Vision (CRV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"3DVQA: Visual Question Answering for 3D Environments\",\"authors\":\"Yasaman Etesam, Leon Kochiev, Angel X. Chang\",\"doi\":\"10.1109/CRV55824.2022.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual Question Answering (VQA) is a widely studied problem in computer vision and natural language processing. However, current approaches to VQA have been investigated primarily in the 2D image domain. We study VQA in the 3D domain, with our input being point clouds of real-world 3D scenes, instead of 2D images. We believe that this 3D data modality provide richer spatial relation information that is of interest in the VQA task. In this paper, we introduce the 3DVQA-ScanNet dataset, the first VQA dataset in 3D, and we investigate the performance of a spectrum of baseline approaches on the 3D VQA task.\",\"PeriodicalId\":131142,\"journal\":{\"name\":\"2022 19th Conference on Robots and Vision (CRV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 19th Conference on Robots and Vision (CRV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV55824.2022.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th Conference on Robots and Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV55824.2022.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3DVQA: Visual Question Answering for 3D Environments
Visual Question Answering (VQA) is a widely studied problem in computer vision and natural language processing. However, current approaches to VQA have been investigated primarily in the 2D image domain. We study VQA in the 3D domain, with our input being point clouds of real-world 3D scenes, instead of 2D images. We believe that this 3D data modality provide richer spatial relation information that is of interest in the VQA task. In this paper, we introduce the 3DVQA-ScanNet dataset, the first VQA dataset in 3D, and we investigate the performance of a spectrum of baseline approaches on the 3D VQA task.