基于召回权的Flickr照片标签概念级多模态排序

R. Shah, Yi Yu, Suhua Tang, S. Satoh, Akshay Verma, Roger Zimmermann
{"title":"基于召回权的Flickr照片标签概念级多模态排序","authors":"R. Shah, Yi Yu, Suhua Tang, S. Satoh, Akshay Verma, Roger Zimmermann","doi":"10.1145/2983554.2983555","DOIUrl":null,"url":null,"abstract":"Social media platforms allow users to annotate photos with tags that significantly facilitate an effective semantics understanding, search, and retrieval of photos. However, due to the manual, ambiguous, and personalized nature of user tagging, many tags of a photo are in a random order and even irrelevant to the visual content. Aiming to automatically compute tag relevance for a given photo, we propose a tag ranking scheme based on voting from photo neighbors derived from multimodal information. Specifically, we determine photo neighbors leveraging geo, visual, and semantics concepts derived from spatial information, visual content, and textual metadata, respectively. We leverage high-level features instead traditional low-level features to compute tag relevance. Experimental results on a representative set of 203,840 photos from the YFCC100M dataset confirm that above-mentioned multimodal concepts complement each other in computing tag relevance. Moreover, we explore the fusion of multimodal information to refine tag ranking leveraging recall based weighting. Experimental results on the representative set confirm that the proposed algorithm outperforms state-of-the-arts.","PeriodicalId":340803,"journal":{"name":"Proceedings of the 2016 ACM Workshop on Multimedia COMMONS","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Concept-Level Multimodal Ranking of Flickr Photo Tags via Recall Based Weighting\",\"authors\":\"R. Shah, Yi Yu, Suhua Tang, S. Satoh, Akshay Verma, Roger Zimmermann\",\"doi\":\"10.1145/2983554.2983555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social media platforms allow users to annotate photos with tags that significantly facilitate an effective semantics understanding, search, and retrieval of photos. However, due to the manual, ambiguous, and personalized nature of user tagging, many tags of a photo are in a random order and even irrelevant to the visual content. Aiming to automatically compute tag relevance for a given photo, we propose a tag ranking scheme based on voting from photo neighbors derived from multimodal information. Specifically, we determine photo neighbors leveraging geo, visual, and semantics concepts derived from spatial information, visual content, and textual metadata, respectively. We leverage high-level features instead traditional low-level features to compute tag relevance. Experimental results on a representative set of 203,840 photos from the YFCC100M dataset confirm that above-mentioned multimodal concepts complement each other in computing tag relevance. Moreover, we explore the fusion of multimodal information to refine tag ranking leveraging recall based weighting. Experimental results on the representative set confirm that the proposed algorithm outperforms state-of-the-arts.\",\"PeriodicalId\":340803,\"journal\":{\"name\":\"Proceedings of the 2016 ACM Workshop on Multimedia COMMONS\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM Workshop on Multimedia COMMONS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983554.2983555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM Workshop on Multimedia COMMONS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983554.2983555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

社交媒体平台允许用户用标签对照片进行注释,这极大地促进了对照片的有效语义理解、搜索和检索。然而,由于用户标记的手工性、模糊性和个性化,许多照片的标记顺序是随机的,甚至与视觉内容无关。为了自动计算给定照片的标签相关性,提出了一种基于多模态信息衍生的照片邻居投票的标签排序方案。具体来说,我们分别利用空间信息、视觉内容和文本元数据衍生的地理、视觉和语义概念来确定照片邻居。我们利用高级特征代替传统的低级特征来计算标签相关性。在YFCC100M数据集203840张具有代表性的照片上的实验结果证实,上述多模态概念在计算标签相关性方面是相互补充的。此外,我们还探索了多模态信息的融合,以利用基于召回的加权来优化标签排名。在代表性集上的实验结果证实了该算法优于目前最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Concept-Level Multimodal Ranking of Flickr Photo Tags via Recall Based Weighting
Social media platforms allow users to annotate photos with tags that significantly facilitate an effective semantics understanding, search, and retrieval of photos. However, due to the manual, ambiguous, and personalized nature of user tagging, many tags of a photo are in a random order and even irrelevant to the visual content. Aiming to automatically compute tag relevance for a given photo, we propose a tag ranking scheme based on voting from photo neighbors derived from multimodal information. Specifically, we determine photo neighbors leveraging geo, visual, and semantics concepts derived from spatial information, visual content, and textual metadata, respectively. We leverage high-level features instead traditional low-level features to compute tag relevance. Experimental results on a representative set of 203,840 photos from the YFCC100M dataset confirm that above-mentioned multimodal concepts complement each other in computing tag relevance. Moreover, we explore the fusion of multimodal information to refine tag ranking leveraging recall based weighting. Experimental results on the representative set confirm that the proposed algorithm outperforms state-of-the-arts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Which Languages do People Speak on Flickr?: A Language and Geo-Location Study of the YFCC100m Dataset Analysis of Spatial, Temporal, and Content Characteristics of Videos in the YFCC100M Dataset YFCC100M HybridNet fc6 Deep Features for Content-Based Image Retrieval Developing Benchmarks: The Importance of the Process and New Paradigms In-depth Exploration of Geotagging Performance using Sampling Strategies on YFCC100M
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1