等离子体源离子注入的重复脉冲放电系统分析

Kyung-Jae Chung, J. Choe, H. Hwang, Gwang Hoon Kim, Kwang-Chul Ko, Hwang Yong Seok
{"title":"等离子体源离子注入的重复脉冲放电系统分析","authors":"Kyung-Jae Chung, J. Choe, H. Hwang, Gwang Hoon Kim, Kwang-Chul Ko, Hwang Yong Seok","doi":"10.1109/MODSYM.2006.365250","DOIUrl":null,"url":null,"abstract":"The analysis of the repetitive pulse discharge system for the plasma source ion implantation is investigated with both circuit simulation and experiment. In the circuit model, the ion and electron currents on a target are self-consistently varied with the applied voltage because the waveforms of repetitive pulse are affected by the internal properties of plasma, as well as the external circuit parameters. The circuit simulation reveals that not only the plasma properties, but also the circuit components, are important for pulse system to operate at high repetition-rate. The experiments are conducted with a plane electrode immersed in rf-driven argon plasmas. When negative high-voltage pulses are applied to the electrode, the current and voltage waveforms are measured and compared with the simulation results. Control parameters for high repetition-rate operation are discussed, based on the self-consistent circuit analysis of the pulse system","PeriodicalId":410776,"journal":{"name":"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of Repetitive Pulse Discharge System for Plasma Source Ion Implantation\",\"authors\":\"Kyung-Jae Chung, J. Choe, H. Hwang, Gwang Hoon Kim, Kwang-Chul Ko, Hwang Yong Seok\",\"doi\":\"10.1109/MODSYM.2006.365250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis of the repetitive pulse discharge system for the plasma source ion implantation is investigated with both circuit simulation and experiment. In the circuit model, the ion and electron currents on a target are self-consistently varied with the applied voltage because the waveforms of repetitive pulse are affected by the internal properties of plasma, as well as the external circuit parameters. The circuit simulation reveals that not only the plasma properties, but also the circuit components, are important for pulse system to operate at high repetition-rate. The experiments are conducted with a plane electrode immersed in rf-driven argon plasmas. When negative high-voltage pulses are applied to the electrode, the current and voltage waveforms are measured and compared with the simulation results. Control parameters for high repetition-rate operation are discussed, based on the self-consistent circuit analysis of the pulse system\",\"PeriodicalId\":410776,\"journal\":{\"name\":\"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium\",\"volume\":\"04 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MODSYM.2006.365250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MODSYM.2006.365250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对等离子体源离子注入的重复脉冲放电系统进行了电路仿真和实验分析。在电路模型中,由于重复脉冲的波形受等离子体内部特性和外部电路参数的影响,靶上的离子和电子电流随外加电压的变化是自一致的。电路仿真结果表明,等离子体的特性和电路元件对脉冲系统的高重复率工作起着重要的作用。实验采用平面电极浸泡在射频驱动氩等离子体中进行。当负高压脉冲作用于电极时,测量了电流和电压波形,并与仿真结果进行了比较。在分析脉冲系统自洽电路的基础上,讨论了高重复率运行的控制参数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Repetitive Pulse Discharge System for Plasma Source Ion Implantation
The analysis of the repetitive pulse discharge system for the plasma source ion implantation is investigated with both circuit simulation and experiment. In the circuit model, the ion and electron currents on a target are self-consistently varied with the applied voltage because the waveforms of repetitive pulse are affected by the internal properties of plasma, as well as the external circuit parameters. The circuit simulation reveals that not only the plasma properties, but also the circuit components, are important for pulse system to operate at high repetition-rate. The experiments are conducted with a plane electrode immersed in rf-driven argon plasmas. When negative high-voltage pulses are applied to the electrode, the current and voltage waveforms are measured and compared with the simulation results. Control parameters for high repetition-rate operation are discussed, based on the self-consistent circuit analysis of the pulse system
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast discharge, high energy density capacitor performance Series Stacked Switches for Radar Transmitters Biophotonic Studies of Mammalian Cells with Nanosecond Pulsed Power Using Quantum Dots Green-Laser-Triggered Water Switching at 1.6 MegaVolts A Comparison of the AC Breakdown Strength of New and Used Poly-α Olefin Oil to Transformer Oil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1