基于慢速移动服务器高效数据采集的公交通过时间估计

Carlos García-Mauriño, P. Zufiria, Alejandro Jarabo-Peñas
{"title":"基于慢速移动服务器高效数据采集的公交通过时间估计","authors":"Carlos García-Mauriño, P. Zufiria, Alejandro Jarabo-Peñas","doi":"10.1109/CSCI51800.2020.00216","DOIUrl":null,"url":null,"abstract":"Statistical description and prediction of bus arrival times is relevant for public transport users since it allows more timewise efficient journeys. This work is focused on characterizing the real behavior of buses based on past arrival estimation data. The main goal is to estimate real bus pass times by optimally collecting data from an intercity bus arrival time estimation system which is limited in petition handling capacity. This requires to model the server behavior prior to the design of the data collection system. In addition, it also requires the design of an algorithm to estimate the bus real passing time considering that only the provided estimated time of arrival is available. This information can be useful for designing alternative online arrival time estimators based on supervised learning which could potentially improve the estimator efficiency.","PeriodicalId":336929,"journal":{"name":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bus Pass Time Estimation based on Efficient Data Gathering from a Slow Mobility Server\",\"authors\":\"Carlos García-Mauriño, P. Zufiria, Alejandro Jarabo-Peñas\",\"doi\":\"10.1109/CSCI51800.2020.00216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical description and prediction of bus arrival times is relevant for public transport users since it allows more timewise efficient journeys. This work is focused on characterizing the real behavior of buses based on past arrival estimation data. The main goal is to estimate real bus pass times by optimally collecting data from an intercity bus arrival time estimation system which is limited in petition handling capacity. This requires to model the server behavior prior to the design of the data collection system. In addition, it also requires the design of an algorithm to estimate the bus real passing time considering that only the provided estimated time of arrival is available. This information can be useful for designing alternative online arrival time estimators based on supervised learning which could potentially improve the estimator efficiency.\",\"PeriodicalId\":336929,\"journal\":{\"name\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI51800.2020.00216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI51800.2020.00216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

公交车到达时间的统计描述和预测与公共交通用户相关,因为它允许更有效的时间旅行。这项工作的重点是基于过去的到达估计数据来描述公共汽车的真实行为。主要目标是通过从城际巴士到达时间估计系统收集数据来估计实际的巴士通过时间,该系统在请愿处理能力方面受到限制。这需要在设计数据收集系统之前对服务器行为进行建模。此外,考虑到只有提供的估计到达时间可用,还需要设计一种算法来估计总线的实际通过时间。这些信息可以用于设计基于监督学习的在线到达时间估计器,从而潜在地提高估计器的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bus Pass Time Estimation based on Efficient Data Gathering from a Slow Mobility Server
Statistical description and prediction of bus arrival times is relevant for public transport users since it allows more timewise efficient journeys. This work is focused on characterizing the real behavior of buses based on past arrival estimation data. The main goal is to estimate real bus pass times by optimally collecting data from an intercity bus arrival time estimation system which is limited in petition handling capacity. This requires to model the server behavior prior to the design of the data collection system. In addition, it also requires the design of an algorithm to estimate the bus real passing time considering that only the provided estimated time of arrival is available. This information can be useful for designing alternative online arrival time estimators based on supervised learning which could potentially improve the estimator efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
First Success of Cancer Gene Data Analysis of 169 Microarrays for Medical Diagnosis Artificial Intelligence in Computerized Adaptive Testing Evidence for Monitoring the User and Computing the User’s trust Transfer of Hierarchical Reinforcement Learning Structures for Robotic Manipulation Tasks An open-source application built with R programming language for clinical laboratories to innovate process of excellence and overcome the uncertain outlook during the global healthcare crisis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1