利用相似性提高原始图像图片库的存储效率

Binqi Zhang, Chen Wang, B. Zhou, Albert Y. Zomaya
{"title":"利用相似性提高原始图像图片库的存储效率","authors":"Binqi Zhang, Chen Wang, B. Zhou, Albert Y. Zomaya","doi":"10.1109/PDCAT.2016.045","DOIUrl":null,"url":null,"abstract":"Exploiting temporal and spatial locality is a way to improve the performance of data compression and deduplication in a storage system. Through our evaluation, we find that content level similarity measures such as similar tags of photos have a certain correlation to data compressibility. Raw images with similar tags can be compressed together to get better storage space savings. Furthermore, storing similar raw images together enables rapid data sorting, searching, and retrieval if the images are stored in a distributed and large-scale environment with reduced fragmentation. In this paper, we present the correlation results between content similarity and data compressibility using a dataset built from Flickr. The system design we proposed has been based on the evaluation and it optimizes storage efficiency for Top-N relevant images with the same tag. On one hand, the storage space is saved. On the other hand, the design may accelerate the query performance for Top-N relevance search.","PeriodicalId":203925,"journal":{"name":"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Storage Efficiency for Raw Image Photo Repository by Exploiting Similarity\",\"authors\":\"Binqi Zhang, Chen Wang, B. Zhou, Albert Y. Zomaya\",\"doi\":\"10.1109/PDCAT.2016.045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploiting temporal and spatial locality is a way to improve the performance of data compression and deduplication in a storage system. Through our evaluation, we find that content level similarity measures such as similar tags of photos have a certain correlation to data compressibility. Raw images with similar tags can be compressed together to get better storage space savings. Furthermore, storing similar raw images together enables rapid data sorting, searching, and retrieval if the images are stored in a distributed and large-scale environment with reduced fragmentation. In this paper, we present the correlation results between content similarity and data compressibility using a dataset built from Flickr. The system design we proposed has been based on the evaluation and it optimizes storage efficiency for Top-N relevant images with the same tag. On one hand, the storage space is saved. On the other hand, the design may accelerate the query performance for Top-N relevance search.\",\"PeriodicalId\":203925,\"journal\":{\"name\":\"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT.2016.045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2016.045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用时间和空间局部性是提高存储系统数据压缩和重复数据删除性能的一种方法。通过我们的评估,我们发现照片的相似标签等内容级相似度量与数据可压缩性有一定的相关性。具有相似标签的原始图像可以压缩在一起以更好地节省存储空间。此外,将相似的原始图像存储在一起可以实现快速的数据排序、搜索和检索,如果图像存储在分布式和大规模的环境中,并且碎片减少。在本文中,我们使用Flickr构建的数据集给出了内容相似度和数据可压缩性之间的相关结果。我们提出的系统设计是基于评估的,它优化了具有相同标签的Top-N相关图像的存储效率。一方面,节省了存储空间。另一方面,该设计可以加快Top-N相关性搜索的查询性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Storage Efficiency for Raw Image Photo Repository by Exploiting Similarity
Exploiting temporal and spatial locality is a way to improve the performance of data compression and deduplication in a storage system. Through our evaluation, we find that content level similarity measures such as similar tags of photos have a certain correlation to data compressibility. Raw images with similar tags can be compressed together to get better storage space savings. Furthermore, storing similar raw images together enables rapid data sorting, searching, and retrieval if the images are stored in a distributed and large-scale environment with reduced fragmentation. In this paper, we present the correlation results between content similarity and data compressibility using a dataset built from Flickr. The system design we proposed has been based on the evaluation and it optimizes storage efficiency for Top-N relevant images with the same tag. On one hand, the storage space is saved. On the other hand, the design may accelerate the query performance for Top-N relevance search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Learning-Based System for Monitoring Electrical Load in Smart Grid A Domain-Independent Hybrid Approach for Automatic Taxonomy Induction CUDA-Based Parallel Implementation of IBM Word Alignment Algorithm for Statistical Machine Translation Optimal Scheduling Algorithm of MapReduce Tasks Based on QoS in the Hybrid Cloud Pre-Impact Fall Detection Based on Wearable Device Using Dynamic Threshold Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1