连续时间马尔可夫链的粗粒度并行均匀化

H. Okamura, Y. Kunimoto, T. Dohi
{"title":"连续时间马尔可夫链的粗粒度并行均匀化","authors":"H. Okamura, Y. Kunimoto, T. Dohi","doi":"10.1109/PRDC.2014.22","DOIUrl":null,"url":null,"abstract":"This paper discusses parallel algorithms for transient analysis of continuous-time Markov chains (CTMCs). In dependable computing, it is used for evaluating the rare events such as failure based on CTMC models. The uniformizaton is a well-known algorithm for obtaining the transient solution of CTMC. However, the computation cost of uniformization is not low in the case of large-sized and stiff CTMCs. This paper considers parallelization of the uniformization algorithm. Particularly, we propose a coarse-grained parallel uniformization which is appropriate for multicore processors. This method enables us to analyze the large-sized and stiff CTMCs efficiently. In numerical examples, we examine the effectiveness of the proposed parallel algorithms with multicore processors.","PeriodicalId":187000,"journal":{"name":"2014 IEEE 20th Pacific Rim International Symposium on Dependable Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coarse-Grained Parallel Uniformization for Continuous-Time Markov Chains\",\"authors\":\"H. Okamura, Y. Kunimoto, T. Dohi\",\"doi\":\"10.1109/PRDC.2014.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses parallel algorithms for transient analysis of continuous-time Markov chains (CTMCs). In dependable computing, it is used for evaluating the rare events such as failure based on CTMC models. The uniformizaton is a well-known algorithm for obtaining the transient solution of CTMC. However, the computation cost of uniformization is not low in the case of large-sized and stiff CTMCs. This paper considers parallelization of the uniformization algorithm. Particularly, we propose a coarse-grained parallel uniformization which is appropriate for multicore processors. This method enables us to analyze the large-sized and stiff CTMCs efficiently. In numerical examples, we examine the effectiveness of the proposed parallel algorithms with multicore processors.\",\"PeriodicalId\":187000,\"journal\":{\"name\":\"2014 IEEE 20th Pacific Rim International Symposium on Dependable Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 20th Pacific Rim International Symposium on Dependable Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRDC.2014.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 20th Pacific Rim International Symposium on Dependable Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRDC.2014.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了连续时间马尔可夫链暂态分析的并行算法。在可靠计算中,基于CTMC模型对故障等罕见事件进行评估。均匀化算法是求解CTMC暂态解的一种著名算法。然而,对于大型刚性ctmc,均匀化的计算成本并不低。本文考虑了均匀化算法的并行化问题。特别地,我们提出了一种适合多核处理器的粗粒度并行统一。该方法可以有效地分析大型刚性ctmc。在数值例子中,我们检验了所提出的多核并行算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coarse-Grained Parallel Uniformization for Continuous-Time Markov Chains
This paper discusses parallel algorithms for transient analysis of continuous-time Markov chains (CTMCs). In dependable computing, it is used for evaluating the rare events such as failure based on CTMC models. The uniformizaton is a well-known algorithm for obtaining the transient solution of CTMC. However, the computation cost of uniformization is not low in the case of large-sized and stiff CTMCs. This paper considers parallelization of the uniformization algorithm. Particularly, we propose a coarse-grained parallel uniformization which is appropriate for multicore processors. This method enables us to analyze the large-sized and stiff CTMCs efficiently. In numerical examples, we examine the effectiveness of the proposed parallel algorithms with multicore processors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduction of NBTI-Induced Degradation on Ring Oscillators in FPGA Region-Adherent Algorithms: Restricting the Impact of Faults on Service Quality CloudBFT: Elastic Byzantine Fault Tolerance Reliable Shortest Paths in Wireless Sensor Networks: Refocusing on Link Failure Scenarios from Applications Responsiveness of Service Discovery in Wireless Mesh Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1