演化中的人工神经网络博弈主体非自适应、自适应和自适应协同进化的实证比较

Y. J. Yau, J. Teo
{"title":"演化中的人工神经网络博弈主体非自适应、自适应和自适应协同进化的实证比较","authors":"Y. J. Yau, J. Teo","doi":"10.1109/ICCIS.2006.252234","DOIUrl":null,"url":null,"abstract":"This paper compares the implementation of the non-adaptive, adaptive, and self-adaptive co-evolution for evolving artificial neural networks (ANNs) that act as game players for the game of Tic-Tac-Toe (TTT). The objective of this study is to investigate and empirically compare these three different approaches for tuning strategy parameters' in co-evolutionary algorithms in evolving the ANN game-playing agents. The results indicate that the non-adaptive and adaptive co-evolution systems performed better than the self-adaptive co-evolution system when suitable strategy parameters were utilized. The adaptive co-evolution system was also found to possess higher evolutionary stability compared to the other systems and was also successful in synthesizing ANNs with high TTT playing strength both as the first as well as second players","PeriodicalId":296028,"journal":{"name":"2006 IEEE Conference on Cybernetics and Intelligent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Empirical Comparison of Non-adaptive, Adaptive and Self-Adaptive Co-evolution for Evolving Artificial Neural Network Game Players\",\"authors\":\"Y. J. Yau, J. Teo\",\"doi\":\"10.1109/ICCIS.2006.252234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper compares the implementation of the non-adaptive, adaptive, and self-adaptive co-evolution for evolving artificial neural networks (ANNs) that act as game players for the game of Tic-Tac-Toe (TTT). The objective of this study is to investigate and empirically compare these three different approaches for tuning strategy parameters' in co-evolutionary algorithms in evolving the ANN game-playing agents. The results indicate that the non-adaptive and adaptive co-evolution systems performed better than the self-adaptive co-evolution system when suitable strategy parameters were utilized. The adaptive co-evolution system was also found to possess higher evolutionary stability compared to the other systems and was also successful in synthesizing ANNs with high TTT playing strength both as the first as well as second players\",\"PeriodicalId\":296028,\"journal\":{\"name\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2006.252234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2006.252234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文比较了非自适应、自适应和自适应协同进化的人工神经网络(ann)的实现,这些人工神经网络作为一字棋(TTT)游戏的玩家。本研究的目的是研究并实证比较这三种不同的方法来调整人工神经网络博弈代理的协同进化算法中的策略参数。结果表明,当采用合适的策略参数时,非自适应和自适应协同进化系统的性能优于自适应协同进化系统。与其他系统相比,自适应协同进化系统还具有更高的进化稳定性,并且还成功地合成了具有高TTT播放强度的ann作为第一玩家和第二玩家
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Empirical Comparison of Non-adaptive, Adaptive and Self-Adaptive Co-evolution for Evolving Artificial Neural Network Game Players
This paper compares the implementation of the non-adaptive, adaptive, and self-adaptive co-evolution for evolving artificial neural networks (ANNs) that act as game players for the game of Tic-Tac-Toe (TTT). The objective of this study is to investigate and empirically compare these three different approaches for tuning strategy parameters' in co-evolutionary algorithms in evolving the ANN game-playing agents. The results indicate that the non-adaptive and adaptive co-evolution systems performed better than the self-adaptive co-evolution system when suitable strategy parameters were utilized. The adaptive co-evolution system was also found to possess higher evolutionary stability compared to the other systems and was also successful in synthesizing ANNs with high TTT playing strength both as the first as well as second players
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-layer Control Strategy of Dynamics Control System of Vehicle A Fuzzy Multiple Critera Decision Making Method Gait Recognition Considering Directions of Walking Nonlinear Diffusion Driven by Local Features for Image Denoising Designing of an Adaptive Adcock Array and Reducing the Effects of Other Transmitters, Unwanted Reflections and Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1