{"title":"Kinesis:无线传感器网络安全事件响应和预防系统","authors":"Salmin Sultana, Daniele Midi, E. Bertino","doi":"10.1145/2668332.2668351","DOIUrl":null,"url":null,"abstract":"This paper presents Kinesis, a security incident response and prevention system for wireless sensor networks, designed to keep the network functional despite anomalies or attacks and to recover from attacks without significant interruption. Due to the deployment of sensor networks in various critical infrastructures, the applications often impose stringent requirements on data reliability and service availability. Given the failure- and attack-prone nature of sensor networks, it is a pressing concern to enable the sensor networks provide continuous and unobtrusive services. Kinesis is quick and effective in response to incidents, distributed in nature, and dynamic in selecting response actions based on the context. It is lightweight in terms of response policy specification, and communication and energy overhead. A per-node single timer based distributed strategy to select the most effective response executor in a neighborhood makes the system simple and scalable, while achieving proper load distribution and redundant action optimization. We implement Kinesis in TinyOS and measure its performance for various application and network layer incidents. Extensive TOSSIM simulations and testbed experiments show that Kinesis successfully counteracts anomalies/attacks and behaves consistently under various attack scenarios and rates.","PeriodicalId":223777,"journal":{"name":"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Kinesis: a security incident response and prevention system for wireless sensor networks\",\"authors\":\"Salmin Sultana, Daniele Midi, E. Bertino\",\"doi\":\"10.1145/2668332.2668351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents Kinesis, a security incident response and prevention system for wireless sensor networks, designed to keep the network functional despite anomalies or attacks and to recover from attacks without significant interruption. Due to the deployment of sensor networks in various critical infrastructures, the applications often impose stringent requirements on data reliability and service availability. Given the failure- and attack-prone nature of sensor networks, it is a pressing concern to enable the sensor networks provide continuous and unobtrusive services. Kinesis is quick and effective in response to incidents, distributed in nature, and dynamic in selecting response actions based on the context. It is lightweight in terms of response policy specification, and communication and energy overhead. A per-node single timer based distributed strategy to select the most effective response executor in a neighborhood makes the system simple and scalable, while achieving proper load distribution and redundant action optimization. We implement Kinesis in TinyOS and measure its performance for various application and network layer incidents. Extensive TOSSIM simulations and testbed experiments show that Kinesis successfully counteracts anomalies/attacks and behaves consistently under various attack scenarios and rates.\",\"PeriodicalId\":223777,\"journal\":{\"name\":\"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2668332.2668351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2668332.2668351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinesis: a security incident response and prevention system for wireless sensor networks
This paper presents Kinesis, a security incident response and prevention system for wireless sensor networks, designed to keep the network functional despite anomalies or attacks and to recover from attacks without significant interruption. Due to the deployment of sensor networks in various critical infrastructures, the applications often impose stringent requirements on data reliability and service availability. Given the failure- and attack-prone nature of sensor networks, it is a pressing concern to enable the sensor networks provide continuous and unobtrusive services. Kinesis is quick and effective in response to incidents, distributed in nature, and dynamic in selecting response actions based on the context. It is lightweight in terms of response policy specification, and communication and energy overhead. A per-node single timer based distributed strategy to select the most effective response executor in a neighborhood makes the system simple and scalable, while achieving proper load distribution and redundant action optimization. We implement Kinesis in TinyOS and measure its performance for various application and network layer incidents. Extensive TOSSIM simulations and testbed experiments show that Kinesis successfully counteracts anomalies/attacks and behaves consistently under various attack scenarios and rates.