任意大点云的表面重建

T. Wiemann, Isaak Mitschke, Alexander Mock, J. Hertzberg
{"title":"任意大点云的表面重建","authors":"T. Wiemann, Isaak Mitschke, Alexander Mock, J. Hertzberg","doi":"10.1109/IRC.2018.00059","DOIUrl":null,"url":null,"abstract":"Generating 3D robotic maps from point cloud data is an active field of research. To handle high resolution data from terrestrial laser scanning to generate maps for mobile robots is still challenging, especially for city scale environments. In this short paper, we present the results of an approach for surface reconstruction from arbitrarily large point clouds. To achieve this, we serialize the large input data into suitable chunks, that are serialized to a shared hard drive. After computation, the partial results are fused into a globally consistent reconstruction.","PeriodicalId":416113,"journal":{"name":"2018 Second IEEE International Conference on Robotic Computing (IRC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Surface Reconstruction from Arbitrarily Large Point Clouds\",\"authors\":\"T. Wiemann, Isaak Mitschke, Alexander Mock, J. Hertzberg\",\"doi\":\"10.1109/IRC.2018.00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generating 3D robotic maps from point cloud data is an active field of research. To handle high resolution data from terrestrial laser scanning to generate maps for mobile robots is still challenging, especially for city scale environments. In this short paper, we present the results of an approach for surface reconstruction from arbitrarily large point clouds. To achieve this, we serialize the large input data into suitable chunks, that are serialized to a shared hard drive. After computation, the partial results are fused into a globally consistent reconstruction.\",\"PeriodicalId\":416113,\"journal\":{\"name\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2018.00059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2018.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

从点云数据生成三维机器人地图是一个活跃的研究领域。处理来自地面激光扫描的高分辨率数据以生成移动机器人的地图仍然具有挑战性,特别是在城市规模的环境中。在这篇短文中,我们介绍了一种从任意大的点云中重建表面的方法的结果。为了实现这一点,我们将大的输入数据序列化为合适的块,这些块被序列化到共享硬盘驱动器。计算后,将部分结果融合成全局一致的重建结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface Reconstruction from Arbitrarily Large Point Clouds
Generating 3D robotic maps from point cloud data is an active field of research. To handle high resolution data from terrestrial laser scanning to generate maps for mobile robots is still challenging, especially for city scale environments. In this short paper, we present the results of an approach for surface reconstruction from arbitrarily large point clouds. To achieve this, we serialize the large input data into suitable chunks, that are serialized to a shared hard drive. After computation, the partial results are fused into a globally consistent reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning a Set of Interrelated Tasks by Using Sequences of Motor Policies for a Strategic Intrinsically Motivated Learner Improving Code Quality in ROS Packages Using a Temporal Extension of First-Order Logic Rapid Qualification of Mereotopological Relationships Using Signed Distance Fields Towards a Multi-mission QoS and Energy Manager for Autonomous Mobile Robots A Computational Framework for Complementary Situational Awareness (CSA) in Surgical Assistant Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1