{"title":"使用图像质量度量比较超分辨率算法","authors":"I. Bégin, F. Ferrie","doi":"10.1109/CRV.2006.23","DOIUrl":null,"url":null,"abstract":"This paper presents comparisons of two learning-based super-resolution algorithms as well as standard interpolation methods. To allow quality assessment of results, a comparison of a variety of image quality measures is also performed. Results show that a MRF-based super-resolution algorithm improves a previously interpolated image. The estimated degree of improvement varies both according to the quality measure chosen for the comparison as well as the image class.","PeriodicalId":369170,"journal":{"name":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Comparison of Super-Resolution Algorithms Using Image Quality Measures\",\"authors\":\"I. Bégin, F. Ferrie\",\"doi\":\"10.1109/CRV.2006.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents comparisons of two learning-based super-resolution algorithms as well as standard interpolation methods. To allow quality assessment of results, a comparison of a variety of image quality measures is also performed. Results show that a MRF-based super-resolution algorithm improves a previously interpolated image. The estimated degree of improvement varies both according to the quality measure chosen for the comparison as well as the image class.\",\"PeriodicalId\":369170,\"journal\":{\"name\":\"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2006.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2006.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Super-Resolution Algorithms Using Image Quality Measures
This paper presents comparisons of two learning-based super-resolution algorithms as well as standard interpolation methods. To allow quality assessment of results, a comparison of a variety of image quality measures is also performed. Results show that a MRF-based super-resolution algorithm improves a previously interpolated image. The estimated degree of improvement varies both according to the quality measure chosen for the comparison as well as the image class.