基于协同过滤的大数据推荐系统

Jian Shen, Tianqi Zhou, Lina Chen
{"title":"基于协同过滤的大数据推荐系统","authors":"Jian Shen, Tianqi Zhou, Lina Chen","doi":"10.1504/ijcse.2020.10027426","DOIUrl":null,"url":null,"abstract":"Collaborative filtering algorithm is widely used in the recommendation system of e-commerce website, which is based on the analysis of a large number of users' historical behaviour data, so as to explore the users' interest and recommend the appropriate products to users. In this paper, we focus on how to design a reliable and highly accurate algorithm for movie recommendation. It is worth noting that the algorithm is not limited to film recommendation, but can be applied in many other areas of e-commerce. In this paper, we use Java language to implement a movie recommendation system in Ubuntu system. Benefiting from the MapReduce framework and the recommendation algorithm based on items, the system can handle large datasets. The experimental results show that the system can achieve high efficiency and reliability in large datasets.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Collaborative filtering-based recommendation system for big data\",\"authors\":\"Jian Shen, Tianqi Zhou, Lina Chen\",\"doi\":\"10.1504/ijcse.2020.10027426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative filtering algorithm is widely used in the recommendation system of e-commerce website, which is based on the analysis of a large number of users' historical behaviour data, so as to explore the users' interest and recommend the appropriate products to users. In this paper, we focus on how to design a reliable and highly accurate algorithm for movie recommendation. It is worth noting that the algorithm is not limited to film recommendation, but can be applied in many other areas of e-commerce. In this paper, we use Java language to implement a movie recommendation system in Ubuntu system. Benefiting from the MapReduce framework and the recommendation algorithm based on items, the system can handle large datasets. The experimental results show that the system can achieve high efficiency and reliability in large datasets.\",\"PeriodicalId\":340410,\"journal\":{\"name\":\"Int. J. Comput. Sci. Eng.\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcse.2020.10027426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcse.2020.10027426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

协同过滤算法在电子商务网站推荐系统中得到了广泛的应用,它是基于对大量用户历史行为数据的分析,从而挖掘用户的兴趣,向用户推荐合适的产品。本文主要研究如何设计一种可靠、高精度的电影推荐算法。值得注意的是,该算法不仅局限于电影推荐,还可以应用于电商的许多其他领域。本文采用Java语言在Ubuntu系统上实现了一个电影推荐系统。得益于MapReduce框架和基于项的推荐算法,系统可以处理大型数据集。实验结果表明,该系统能够在大数据集上实现较高的效率和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Collaborative filtering-based recommendation system for big data
Collaborative filtering algorithm is widely used in the recommendation system of e-commerce website, which is based on the analysis of a large number of users' historical behaviour data, so as to explore the users' interest and recommend the appropriate products to users. In this paper, we focus on how to design a reliable and highly accurate algorithm for movie recommendation. It is worth noting that the algorithm is not limited to film recommendation, but can be applied in many other areas of e-commerce. In this paper, we use Java language to implement a movie recommendation system in Ubuntu system. Benefiting from the MapReduce framework and the recommendation algorithm based on items, the system can handle large datasets. The experimental results show that the system can achieve high efficiency and reliability in large datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECC-based lightweight mutual authentication protocol for fog enabled IoT system using three-way authentication procedure Gene selection and classification combining information gain ratio with fruit fly optimisation algorithm for single-cell RNA-seq data Attitude control of an unmanned patrol helicopter based on an optimised spiking neural membrane system for use in coal mines CEMP-IR: a novel location aware cache invalidation and replacement policy Prediction of consumer preference for the bottom of the pyramid using EEG-based deep model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1