使用文本分类寻找工作机会

Shilin Zhang, Mei Gu
{"title":"使用文本分类寻找工作机会","authors":"Shilin Zhang, Mei Gu","doi":"10.1109/WISM.2010.47","DOIUrl":null,"url":null,"abstract":"Text Classification is an important field of research. There are a number of approaches to classify text documents. However, there is an important challenge to improve the computational efficiency and recall. In this paper, we propose a novel framework to segment Chinese words, generate word vectors, train the corpus and make prediction. Based on the text classification technology, we successfully help the Chinese disabled persons to acquire job opportunities efficiently in real word. The results show that using this method to build the classifier yields better results than traditional methods. We also experimentally show that careful selection of a subset of features to represent the documents can improve the performance of the classifiers.","PeriodicalId":119569,"journal":{"name":"2010 International Conference on Web Information Systems and Mining","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using Text Categorization to Find Job Opportunities\",\"authors\":\"Shilin Zhang, Mei Gu\",\"doi\":\"10.1109/WISM.2010.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text Classification is an important field of research. There are a number of approaches to classify text documents. However, there is an important challenge to improve the computational efficiency and recall. In this paper, we propose a novel framework to segment Chinese words, generate word vectors, train the corpus and make prediction. Based on the text classification technology, we successfully help the Chinese disabled persons to acquire job opportunities efficiently in real word. The results show that using this method to build the classifier yields better results than traditional methods. We also experimentally show that careful selection of a subset of features to represent the documents can improve the performance of the classifiers.\",\"PeriodicalId\":119569,\"journal\":{\"name\":\"2010 International Conference on Web Information Systems and Mining\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Web Information Systems and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISM.2010.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Web Information Systems and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISM.2010.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

文本分类是一个重要的研究领域。有许多方法可以对文本文档进行分类。然而,提高计算效率和召回率是一个重要的挑战。在本文中,我们提出了一个新的框架来分割汉语词、生成词向量、训练语料库和进行预测。基于文本分类技术,我们成功地帮助中国残疾人在现实世界中高效地获取工作机会。结果表明,使用该方法构建分类器的效果优于传统方法。我们还通过实验证明,仔细选择特征子集来表示文档可以提高分类器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Text Categorization to Find Job Opportunities
Text Classification is an important field of research. There are a number of approaches to classify text documents. However, there is an important challenge to improve the computational efficiency and recall. In this paper, we propose a novel framework to segment Chinese words, generate word vectors, train the corpus and make prediction. Based on the text classification technology, we successfully help the Chinese disabled persons to acquire job opportunities efficiently in real word. The results show that using this method to build the classifier yields better results than traditional methods. We also experimentally show that careful selection of a subset of features to represent the documents can improve the performance of the classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical Simulation of Micronized Re-burning (MCR) Organic Acid Salt Used as an Accelerator The Research of the Grouping Algorithm for Chinese Learners Based on Transitive Closure Research on Multi-colony Diploid Genetic Algorithm for Production Logistics Scheduling Optimization Application of Second Order Diagonal Recurrent Neural Network in Nonlinear System Identification Synchronization Research of Uncoupled Hyper-chaotic Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1