分段路径规划方法

Shikhar Vaish, Shreyam, Sunita Singhal
{"title":"分段路径规划方法","authors":"Shikhar Vaish, Shreyam, Sunita Singhal","doi":"10.1109/PDGC50313.2020.9315788","DOIUrl":null,"url":null,"abstract":"A* algorithm performs well as a Best First Search method, which would not give the shortest path in certain scenarios. Its accuracy depends on the heuristic function and has slow processing speed in the real world. RRT performs slower than A* and Dijkstra's algorithm gives correct output but shows us a slow runtime performance unsuitable for the real-world. This paper uses Dijkstra's algorithm using the priority queue for testing and proposes an approach that can be applied to any path planning algorithm. Experimental results show that the proposed approach performs 51% faster than A* on game datasets and 14% faster on extremely dense map datasets.","PeriodicalId":347216,"journal":{"name":"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Segmented Approach to Path Planning\",\"authors\":\"Shikhar Vaish, Shreyam, Sunita Singhal\",\"doi\":\"10.1109/PDGC50313.2020.9315788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A* algorithm performs well as a Best First Search method, which would not give the shortest path in certain scenarios. Its accuracy depends on the heuristic function and has slow processing speed in the real world. RRT performs slower than A* and Dijkstra's algorithm gives correct output but shows us a slow runtime performance unsuitable for the real-world. This paper uses Dijkstra's algorithm using the priority queue for testing and proposes an approach that can be applied to any path planning algorithm. Experimental results show that the proposed approach performs 51% faster than A* on game datasets and 14% faster on extremely dense map datasets.\",\"PeriodicalId\":347216,\"journal\":{\"name\":\"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDGC50313.2020.9315788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC50313.2020.9315788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

A*算法作为最佳优先搜索方法表现良好,但在某些情况下不会给出最短路径。其精度依赖于启发式函数,在现实世界中处理速度较慢。RRT的执行速度比A*慢,Dijkstra的算法给出了正确的输出,但向我们展示了不适合现实世界的缓慢运行时性能。本文采用Dijkstra算法使用优先级队列进行测试,并提出了一种适用于任何路径规划算法的方法。实验结果表明,该方法在游戏数据集上的速度比A*快51%,在极密集地图数据集上的速度比A*快14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Segmented Approach to Path Planning
A* algorithm performs well as a Best First Search method, which would not give the shortest path in certain scenarios. Its accuracy depends on the heuristic function and has slow processing speed in the real world. RRT performs slower than A* and Dijkstra's algorithm gives correct output but shows us a slow runtime performance unsuitable for the real-world. This paper uses Dijkstra's algorithm using the priority queue for testing and proposes an approach that can be applied to any path planning algorithm. Experimental results show that the proposed approach performs 51% faster than A* on game datasets and 14% faster on extremely dense map datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message Data Analysis of Various Terrorism Activities Using Big Data Approaches on Global Terrorism Database A Convolutional Neural Network Approach for The Diagnosis of Breast Cancer Color Fading: Variation of Colorimetric Parameters with Spectral Reflectance Automatic Rumour Detection Model on Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1