{"title":"MLS曲面的最优带宽选择","authors":"Hao Wang, C. Scheidegger, Cláudio T. Silva","doi":"10.1109/SMI.2008.4547957","DOIUrl":null,"url":null,"abstract":"We address the problem of bandwidth selection in MLS surfaces. While the problem has received relatively little attention in the literature, we show that appropriate selection plays a critical role in the quality of reconstructed surfaces. We formulate the MLS polynomial fitting step as a kernel regression problem for both noiseless and noisy data. Based on this framework, we develop fast algorithms to find optimal bandwidths for a large class of weight functions. We show experimental comparisons of our method, which outperforms heuristically chosen functions and weights previously proposed. We conclude with a discussion of the implications of the Levin's two-step MLS projection for bandwidth selection.","PeriodicalId":118774,"journal":{"name":"2008 IEEE International Conference on Shape Modeling and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Optimal bandwidth selection for MLS surfaces\",\"authors\":\"Hao Wang, C. Scheidegger, Cláudio T. Silva\",\"doi\":\"10.1109/SMI.2008.4547957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of bandwidth selection in MLS surfaces. While the problem has received relatively little attention in the literature, we show that appropriate selection plays a critical role in the quality of reconstructed surfaces. We formulate the MLS polynomial fitting step as a kernel regression problem for both noiseless and noisy data. Based on this framework, we develop fast algorithms to find optimal bandwidths for a large class of weight functions. We show experimental comparisons of our method, which outperforms heuristically chosen functions and weights previously proposed. We conclude with a discussion of the implications of the Levin's two-step MLS projection for bandwidth selection.\",\"PeriodicalId\":118774,\"journal\":{\"name\":\"2008 IEEE International Conference on Shape Modeling and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Shape Modeling and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMI.2008.4547957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Shape Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2008.4547957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We address the problem of bandwidth selection in MLS surfaces. While the problem has received relatively little attention in the literature, we show that appropriate selection plays a critical role in the quality of reconstructed surfaces. We formulate the MLS polynomial fitting step as a kernel regression problem for both noiseless and noisy data. Based on this framework, we develop fast algorithms to find optimal bandwidths for a large class of weight functions. We show experimental comparisons of our method, which outperforms heuristically chosen functions and weights previously proposed. We conclude with a discussion of the implications of the Levin's two-step MLS projection for bandwidth selection.