不同输入源制造数据预处理的概念框架

Dominik Flick, S. Gellrich, M. Filz, Li Ji, S. Thiede, C. Herrmann
{"title":"不同输入源制造数据预处理的概念框架","authors":"Dominik Flick, S. Gellrich, M. Filz, Li Ji, S. Thiede, C. Herrmann","doi":"10.1109/INDIN41052.2019.8972327","DOIUrl":null,"url":null,"abstract":"The manufacturing industry today is experiencing a never seen increase in available data. These data compromise a variety of different formats, semantics, and quality. It is often distributed in different data sources, e.g. sensor data from the production line, environmental data or machine tool parameters. Coming from the field of application the paper will discuss, within a conceptual framework, the possibilities of how to integrate the diverse existing data-sources and how to pre-process the data with high quality using advanced outlier detection algorithms and developing reasonable outlier treatment values by applying machine-learning methods. The result will be validated with real manufacturing data from an automotive use-case.","PeriodicalId":260220,"journal":{"name":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Conceptual Framework for manufacturing data preprocessing of diverse input sources\",\"authors\":\"Dominik Flick, S. Gellrich, M. Filz, Li Ji, S. Thiede, C. Herrmann\",\"doi\":\"10.1109/INDIN41052.2019.8972327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The manufacturing industry today is experiencing a never seen increase in available data. These data compromise a variety of different formats, semantics, and quality. It is often distributed in different data sources, e.g. sensor data from the production line, environmental data or machine tool parameters. Coming from the field of application the paper will discuss, within a conceptual framework, the possibilities of how to integrate the diverse existing data-sources and how to pre-process the data with high quality using advanced outlier detection algorithms and developing reasonable outlier treatment values by applying machine-learning methods. The result will be validated with real manufacturing data from an automotive use-case.\",\"PeriodicalId\":260220,\"journal\":{\"name\":\"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN41052.2019.8972327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN41052.2019.8972327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

今天的制造业正在经历前所未有的可用数据增长。这些数据有各种不同的格式、语义和质量。它通常分布在不同的数据源中,例如来自生产线的传感器数据、环境数据或机床参数。从应用领域出发,本文将在概念框架内讨论如何整合各种现有数据源的可能性,以及如何使用先进的离群值检测算法高质量地预处理数据,并通过应用机器学习方法开发合理的离群值处理值。结果将通过来自汽车用例的真实制造数据进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conceptual Framework for manufacturing data preprocessing of diverse input sources
The manufacturing industry today is experiencing a never seen increase in available data. These data compromise a variety of different formats, semantics, and quality. It is often distributed in different data sources, e.g. sensor data from the production line, environmental data or machine tool parameters. Coming from the field of application the paper will discuss, within a conceptual framework, the possibilities of how to integrate the diverse existing data-sources and how to pre-process the data with high quality using advanced outlier detection algorithms and developing reasonable outlier treatment values by applying machine-learning methods. The result will be validated with real manufacturing data from an automotive use-case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital Twin in Industry 4.0: Technologies, Applications and Challenges Using Multi-Agent Systems for Demand Response Aggregators: Analysis and Requirements for the Development Developing a Secure, Smart Microgrid Energy Market using Distributed Ledger Technologies An Intelligent Assistance System for Controlling Wind-Assisted Ship Propulsion Systems OPC UA Information Model and a Wrapper for IEC 61499 Runtimes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1