基于混合计算机技术的随机搜索参数优化

G. Bekey, M. Gran, A. E. Sabroff, A. Wong
{"title":"基于混合计算机技术的随机搜索参数优化","authors":"G. Bekey, M. Gran, A. E. Sabroff, A. Wong","doi":"10.1145/1464291.1464313","DOIUrl":null,"url":null,"abstract":"Optimum selection of the parameter values for a complex dynamic system usually consists of three distinct phases: (1) a proposed system configuration is selected, in which only parameter values remain as unknowns; (2) one or more performance or cost criteria for evaluation of the system are selected; and (3) a computer technique or algorithm is chosen for adjusting the system parameters until an optimum value of the criterion function is achieved. Typical algorithms are those based on relaxation or steep descent methods. However, both of these methods are primarily suited to optimization of criterion functions with unique minima or maxima. Furthermore, they may fail to converge or may converge only very slowly if the criterion function---parameter space exhibits \"ridges\" or if the criterion function is only piecewise differentiable or piecewise continuous. Both of these difficulties are likely to arise in connection with nonlinear systems. This paper presents an approach to finding a global optimum by means of a modified sequential random perturbation technique implemented on a hybrid computer.","PeriodicalId":297471,"journal":{"name":"AFIPS '66 (Fall)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1966-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Parameter optimization by random search using hybrid computer techniques\",\"authors\":\"G. Bekey, M. Gran, A. E. Sabroff, A. Wong\",\"doi\":\"10.1145/1464291.1464313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimum selection of the parameter values for a complex dynamic system usually consists of three distinct phases: (1) a proposed system configuration is selected, in which only parameter values remain as unknowns; (2) one or more performance or cost criteria for evaluation of the system are selected; and (3) a computer technique or algorithm is chosen for adjusting the system parameters until an optimum value of the criterion function is achieved. Typical algorithms are those based on relaxation or steep descent methods. However, both of these methods are primarily suited to optimization of criterion functions with unique minima or maxima. Furthermore, they may fail to converge or may converge only very slowly if the criterion function---parameter space exhibits \\\"ridges\\\" or if the criterion function is only piecewise differentiable or piecewise continuous. Both of these difficulties are likely to arise in connection with nonlinear systems. This paper presents an approach to finding a global optimum by means of a modified sequential random perturbation technique implemented on a hybrid computer.\",\"PeriodicalId\":297471,\"journal\":{\"name\":\"AFIPS '66 (Fall)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1966-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AFIPS '66 (Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1464291.1464313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AFIPS '66 (Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1464291.1464313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

复杂动态系统参数值的最优选择通常包括三个不同的阶段:(1)选择建议的系统配置,其中只有参数值保持未知;(2)选择一个或多个评价系统的性能或成本标准;(3)选择一种计算机技术或算法来调整系统参数,直到达到准则函数的最优值。典型的算法是基于松弛法或陡峭下降法的算法。然而,这两种方法主要适用于具有唯一最小值或最大值的准则函数的优化。此外,如果准则函数-参数空间显示“脊”,或者准则函数只是分段可微或分段连续,则它们可能无法收敛或只会非常缓慢地收敛。这两种困难都可能与非线性系统有关。本文提出了一种在混合计算机上利用改进的顺序随机扰动技术求全局最优的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter optimization by random search using hybrid computer techniques
Optimum selection of the parameter values for a complex dynamic system usually consists of three distinct phases: (1) a proposed system configuration is selected, in which only parameter values remain as unknowns; (2) one or more performance or cost criteria for evaluation of the system are selected; and (3) a computer technique or algorithm is chosen for adjusting the system parameters until an optimum value of the criterion function is achieved. Typical algorithms are those based on relaxation or steep descent methods. However, both of these methods are primarily suited to optimization of criterion functions with unique minima or maxima. Furthermore, they may fail to converge or may converge only very slowly if the criterion function---parameter space exhibits "ridges" or if the criterion function is only piecewise differentiable or piecewise continuous. Both of these difficulties are likely to arise in connection with nonlinear systems. This paper presents an approach to finding a global optimum by means of a modified sequential random perturbation technique implemented on a hybrid computer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated logic design techniques applicable to integrated circuitry technology A conversational system for incremental compilation and execution in a time-sharing environment A system for Automatic Value Exchange (SAVE) The SDS SIGMA 7: a real-time time-sharing computer The Lincoln Reckoner: an operation-oriented, on-line facility with distributed control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1