结合机械、电力和热能转换为生态车辆能量收集的概念

M. Schier, Mounir Nasri, W. Kraft, N. Kevlishvili, Johannes J. H. Paulides, L. Encica
{"title":"结合机械、电力和热能转换为生态车辆能量收集的概念","authors":"M. Schier, Mounir Nasri, W. Kraft, N. Kevlishvili, Johannes J. H. Paulides, L. Encica","doi":"10.1109/EVER.2018.8362363","DOIUrl":null,"url":null,"abstract":"In comparison with common combustion motor driven vehicles future electric driven vehicles vary more in their reachable range because of the high drive train efficiency and the different energy demand requirements in different drive conditions. One of the main issues to improve the overall range is the minimization of energy consumption. On the one hand an adapted energy management strategy is needed to achieve a more comfortable and acceptable equalization in the range. On the other hand it is important to recuperate mechanical, electrical and thermal energy, both inside and from the vehicles wherever possible. For example, it is thinkable to use the kinetic energy of braking vehicles outside the vehicle to power traffic lights. If a combustion process is used, a lot of waste thermal energy can be reused from the tailpipe. Or solar energy may be used. If a vehicle has a varying duty-cycle it makes sense to adapt the powertrain to suit the power need. Whatever the available energy, it has to go hand in hand with minimizing the energy consumption. This paper is based on the knowledge and combination of future technologies [2], which are useful to collect and convert energy coming from different sources within a vehicle.","PeriodicalId":344175,"journal":{"name":"2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Combining mechanical, electrical and thermal energy conversion for ecological vehicle energy harvesting concepts\",\"authors\":\"M. Schier, Mounir Nasri, W. Kraft, N. Kevlishvili, Johannes J. H. Paulides, L. Encica\",\"doi\":\"10.1109/EVER.2018.8362363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In comparison with common combustion motor driven vehicles future electric driven vehicles vary more in their reachable range because of the high drive train efficiency and the different energy demand requirements in different drive conditions. One of the main issues to improve the overall range is the minimization of energy consumption. On the one hand an adapted energy management strategy is needed to achieve a more comfortable and acceptable equalization in the range. On the other hand it is important to recuperate mechanical, electrical and thermal energy, both inside and from the vehicles wherever possible. For example, it is thinkable to use the kinetic energy of braking vehicles outside the vehicle to power traffic lights. If a combustion process is used, a lot of waste thermal energy can be reused from the tailpipe. Or solar energy may be used. If a vehicle has a varying duty-cycle it makes sense to adapt the powertrain to suit the power need. Whatever the available energy, it has to go hand in hand with minimizing the energy consumption. This paper is based on the knowledge and combination of future technologies [2], which are useful to collect and convert energy coming from different sources within a vehicle.\",\"PeriodicalId\":344175,\"journal\":{\"name\":\"2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EVER.2018.8362363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVER.2018.8362363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

与普通的内燃机驱动汽车相比,未来电动汽车的可达里程差异更大,因为传动系统效率高,不同驱动条件下的能量需求不同。提高整体范围的主要问题之一是最小化能源消耗。一方面,需要一个适应的能量管理战略,以实现更舒适和可接受的均衡范围。另一方面,在任何可能的情况下,从车辆内部和车辆中回收机械、电力和热能是很重要的。例如,利用车外制动车辆的动能为交通灯供电是可以想象的。如果使用燃烧过程,大量的废热能可以从排气管中重新利用。或者可以使用太阳能。如果车辆具有不同的占空比,那么调整动力系统以适应动力需求是有意义的。无论可用的能源是什么,它都必须与最小化能源消耗齐头并进。这篇论文是基于未来技术[2]的知识和组合,这些技术有助于在车辆内收集和转换来自不同来源的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining mechanical, electrical and thermal energy conversion for ecological vehicle energy harvesting concepts
In comparison with common combustion motor driven vehicles future electric driven vehicles vary more in their reachable range because of the high drive train efficiency and the different energy demand requirements in different drive conditions. One of the main issues to improve the overall range is the minimization of energy consumption. On the one hand an adapted energy management strategy is needed to achieve a more comfortable and acceptable equalization in the range. On the other hand it is important to recuperate mechanical, electrical and thermal energy, both inside and from the vehicles wherever possible. For example, it is thinkable to use the kinetic energy of braking vehicles outside the vehicle to power traffic lights. If a combustion process is used, a lot of waste thermal energy can be reused from the tailpipe. Or solar energy may be used. If a vehicle has a varying duty-cycle it makes sense to adapt the powertrain to suit the power need. Whatever the available energy, it has to go hand in hand with minimizing the energy consumption. This paper is based on the knowledge and combination of future technologies [2], which are useful to collect and convert energy coming from different sources within a vehicle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of an axial-flux permanent magnet machine for a solar-powered electric vehicle Soft-landing control of low-energy solenoid valve actuators Three traction motors with different magnet materials — Influence on cost, losses, vehicle performance, energy use and environmental impact Experimental comparison of energy management strategies for a hybrid electric bus in a test-bench Analysis and design of bi-directional DC-DC converters for ultracapacitors management in EVs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1