P. Peñil, H. Posadas, Alejandro Nicolás, E. Villar
{"title":"使用通道语义从UML/MARTE模型自动合成","authors":"P. Peñil, H. Posadas, Alejandro Nicolás, E. Villar","doi":"10.1145/2432631.2432640","DOIUrl":null,"url":null,"abstract":"Model-driven design is very common nowadays. In this context, the UML/MARTE profile is a well-known solution for real-time, embedded system modeling. This profile enables the functional and non-functional details of the system to be modeled together. Regarding non-functional details, the profile allows certain real-time constraints to be imposed when describing the system concurrency, in order to ensure predictability. However, these constraints also limit the modeling flexibility required to evaluate different design alternatives when optimizing system performance. The paper proposes a solution for automatically synthesizing the resulting models, combining new communication semantics with standard UML/MARTE real-time management features. The UML/MARTE approach presented in this paper enables concurrency and synchronization effects to be modeled at communication points, making system exploration and implementation easier.","PeriodicalId":158450,"journal":{"name":"ACES-MB '12","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Automatic synthesis from UML/MARTE models using channel semantics\",\"authors\":\"P. Peñil, H. Posadas, Alejandro Nicolás, E. Villar\",\"doi\":\"10.1145/2432631.2432640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-driven design is very common nowadays. In this context, the UML/MARTE profile is a well-known solution for real-time, embedded system modeling. This profile enables the functional and non-functional details of the system to be modeled together. Regarding non-functional details, the profile allows certain real-time constraints to be imposed when describing the system concurrency, in order to ensure predictability. However, these constraints also limit the modeling flexibility required to evaluate different design alternatives when optimizing system performance. The paper proposes a solution for automatically synthesizing the resulting models, combining new communication semantics with standard UML/MARTE real-time management features. The UML/MARTE approach presented in this paper enables concurrency and synchronization effects to be modeled at communication points, making system exploration and implementation easier.\",\"PeriodicalId\":158450,\"journal\":{\"name\":\"ACES-MB '12\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACES-MB '12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2432631.2432640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACES-MB '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2432631.2432640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic synthesis from UML/MARTE models using channel semantics
Model-driven design is very common nowadays. In this context, the UML/MARTE profile is a well-known solution for real-time, embedded system modeling. This profile enables the functional and non-functional details of the system to be modeled together. Regarding non-functional details, the profile allows certain real-time constraints to be imposed when describing the system concurrency, in order to ensure predictability. However, these constraints also limit the modeling flexibility required to evaluate different design alternatives when optimizing system performance. The paper proposes a solution for automatically synthesizing the resulting models, combining new communication semantics with standard UML/MARTE real-time management features. The UML/MARTE approach presented in this paper enables concurrency and synchronization effects to be modeled at communication points, making system exploration and implementation easier.