使用数据挖掘预测对Covid压力的易感性

Rajni Jindal, C. Kumar, Gaurav Jawla, Harshit Goyal
{"title":"使用数据挖掘预测对Covid压力的易感性","authors":"Rajni Jindal, C. Kumar, Gaurav Jawla, Harshit Goyal","doi":"10.1109/ESCI53509.2022.9758247","DOIUrl":null,"url":null,"abstract":"Coronavirus (COVID-19) had major impacts on the daily lives of people. Lock-downs, work from home situations, loss in jobs, market changes, and less communication, and interaction between people especially during the stressful Covid period have made them more vulnerable to mental health issues, depression, loneliness, etc. With Covid related healthcare being given priority, the mental health issues faced by the public that has been both directly and indirectly affected by it have been majorly left ignored. These issues need to be taken care of by people on individual level and by the government for better public health. Hence, in this paper we introduce the emerging technique of data mining into the Covid-19 linked mental health for predicting the susceptibility of the general public around the globe to mental health side effects as a result of covid and pandemic circumstances. We used the COVIDiSTRESS survey data containing 103825 instances of people across the globe to identify the people more susceptible to Covid related stress. Logistic regression, random forest, xgboost, AdaBoost, and gradient boosting classifier were applied to the processed data giving an accuracy of 88.12%, 88.89%, 88.73%, 88.60%, and 89.25% respectively. The Models predicted the people who are likely to face covid stress based on different independent factors like their demographic variables, trust of authorities, corona concerns etc. The stress factor was measured using PSS-10 variable included in the survey. The result showed that the model developed with Gradient Boosting Classifier is found to be the most efficient model with an accuracy of 89.25%. Our analysis also showed that females, divorced/widowed people and full-time employees were more prone to stress amongst others in the gender/marital status/employment category.","PeriodicalId":436539,"journal":{"name":"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting Susceptibility to Covid Stress Using Data Mining\",\"authors\":\"Rajni Jindal, C. Kumar, Gaurav Jawla, Harshit Goyal\",\"doi\":\"10.1109/ESCI53509.2022.9758247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coronavirus (COVID-19) had major impacts on the daily lives of people. Lock-downs, work from home situations, loss in jobs, market changes, and less communication, and interaction between people especially during the stressful Covid period have made them more vulnerable to mental health issues, depression, loneliness, etc. With Covid related healthcare being given priority, the mental health issues faced by the public that has been both directly and indirectly affected by it have been majorly left ignored. These issues need to be taken care of by people on individual level and by the government for better public health. Hence, in this paper we introduce the emerging technique of data mining into the Covid-19 linked mental health for predicting the susceptibility of the general public around the globe to mental health side effects as a result of covid and pandemic circumstances. We used the COVIDiSTRESS survey data containing 103825 instances of people across the globe to identify the people more susceptible to Covid related stress. Logistic regression, random forest, xgboost, AdaBoost, and gradient boosting classifier were applied to the processed data giving an accuracy of 88.12%, 88.89%, 88.73%, 88.60%, and 89.25% respectively. The Models predicted the people who are likely to face covid stress based on different independent factors like their demographic variables, trust of authorities, corona concerns etc. The stress factor was measured using PSS-10 variable included in the survey. The result showed that the model developed with Gradient Boosting Classifier is found to be the most efficient model with an accuracy of 89.25%. Our analysis also showed that females, divorced/widowed people and full-time employees were more prone to stress amongst others in the gender/marital status/employment category.\",\"PeriodicalId\":436539,\"journal\":{\"name\":\"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESCI53509.2022.9758247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCI53509.2022.9758247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

新冠肺炎疫情对人们的日常生活产生了重大影响。封锁、在家工作、失业、市场变化,以及人与人之间沟通和互动的减少,特别是在疫情期间,使他们更容易受到心理健康问题、抑郁、孤独等的影响。随着与Covid相关的医疗保健得到优先考虑,受其直接和间接影响的公众面临的心理健康问题在很大程度上被忽视了。这些问题需要由个人和政府来解决,以改善公共卫生。因此,在本文中,我们将新兴的数据挖掘技术引入与covid -19相关的心理健康,以预测全球公众对covid和大流行环境导致的心理健康副作用的易感性。我们使用了包含全球103825个病例的COVIDiSTRESS调查数据,以确定更容易受到Covid相关压力的人群。采用Logistic回归、随机森林、xgboost、AdaBoost和梯度增强分类器对处理后的数据进行分类,准确率分别为88.12%、88.89%、88.73%、88.60%和89.25%。这些模型根据不同的独立因素,如人口统计变量、对当局的信任、对冠状病毒的担忧等,预测了可能面临covid压力的人。使用调查中包含的PSS-10变量测量应激因子。结果表明,使用梯度增强分类器建立的模型是最有效的模型,准确率为89.25%。我们的分析还显示,在性别/婚姻状况/就业类别中,女性、离婚/丧偶人士和全职员工更容易感到压力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Susceptibility to Covid Stress Using Data Mining
Coronavirus (COVID-19) had major impacts on the daily lives of people. Lock-downs, work from home situations, loss in jobs, market changes, and less communication, and interaction between people especially during the stressful Covid period have made them more vulnerable to mental health issues, depression, loneliness, etc. With Covid related healthcare being given priority, the mental health issues faced by the public that has been both directly and indirectly affected by it have been majorly left ignored. These issues need to be taken care of by people on individual level and by the government for better public health. Hence, in this paper we introduce the emerging technique of data mining into the Covid-19 linked mental health for predicting the susceptibility of the general public around the globe to mental health side effects as a result of covid and pandemic circumstances. We used the COVIDiSTRESS survey data containing 103825 instances of people across the globe to identify the people more susceptible to Covid related stress. Logistic regression, random forest, xgboost, AdaBoost, and gradient boosting classifier were applied to the processed data giving an accuracy of 88.12%, 88.89%, 88.73%, 88.60%, and 89.25% respectively. The Models predicted the people who are likely to face covid stress based on different independent factors like their demographic variables, trust of authorities, corona concerns etc. The stress factor was measured using PSS-10 variable included in the survey. The result showed that the model developed with Gradient Boosting Classifier is found to be the most efficient model with an accuracy of 89.25%. Our analysis also showed that females, divorced/widowed people and full-time employees were more prone to stress amongst others in the gender/marital status/employment category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum Response Mechanism in Vehicular Cooperative Caching for C-V2X Networks A Modified Multiband Antenna for 5G Communication Deep Learning-Based Comparative Study to Detect Polyp Removal in Endoscopic Images A Multiple Stage Deep Learning Model for NID in MANETs Automated Diagnosis of Pneumonia through Capsule Network in conjunction with ResNet50v2 model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1