采用单相移相和扩展移相控制技术的双有源桥隔离DC - DC变换器的比较分析

Anupam Kumar, A. H. Bhat, P. Agarwal
{"title":"采用单相移相和扩展移相控制技术的双有源桥隔离DC - DC变换器的比较分析","authors":"Anupam Kumar, A. H. Bhat, P. Agarwal","doi":"10.1109/CERA.2017.8343363","DOIUrl":null,"url":null,"abstract":"Bidirectional energy transfer capability is the central part of a lot of modern power conversion systems. Preferably, for reduction of size, weight and cost these systems use a single high efficiency power electronic conversion system. A dual active bridge converter having two DC-AC converters connected back to back through an AC inductor/transformer is a common topology used for obtaining high efficiency bidirectional power conversion. Some characteristic features of the DAB converter topology are bidirectional power flow capability, inherent soft switching, high power density, high efficiency, galvanic isolation and low number of passive components. In this paper, circuit operation, design, and comparison of efficiency, switch stress, and closed loop operation for step load variation are discussed. Two common control strategies namely single phase shift, and extended phase shift are compared and respective waveforms are shown.","PeriodicalId":286358,"journal":{"name":"2017 6th International Conference on Computer Applications In Electrical Engineering-Recent Advances (CERA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Comparative analysis of dual active bridge isolated DC to DC converter with single phase shift and extended phase shift control techniques\",\"authors\":\"Anupam Kumar, A. H. Bhat, P. Agarwal\",\"doi\":\"10.1109/CERA.2017.8343363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bidirectional energy transfer capability is the central part of a lot of modern power conversion systems. Preferably, for reduction of size, weight and cost these systems use a single high efficiency power electronic conversion system. A dual active bridge converter having two DC-AC converters connected back to back through an AC inductor/transformer is a common topology used for obtaining high efficiency bidirectional power conversion. Some characteristic features of the DAB converter topology are bidirectional power flow capability, inherent soft switching, high power density, high efficiency, galvanic isolation and low number of passive components. In this paper, circuit operation, design, and comparison of efficiency, switch stress, and closed loop operation for step load variation are discussed. Two common control strategies namely single phase shift, and extended phase shift are compared and respective waveforms are shown.\",\"PeriodicalId\":286358,\"journal\":{\"name\":\"2017 6th International Conference on Computer Applications In Electrical Engineering-Recent Advances (CERA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 6th International Conference on Computer Applications In Electrical Engineering-Recent Advances (CERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CERA.2017.8343363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th International Conference on Computer Applications In Electrical Engineering-Recent Advances (CERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERA.2017.8343363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

双向能量传递能力是许多现代电力转换系统的核心部分。优选地,为了减小尺寸、重量和成本,这些系统使用单个高效电力电子转换系统。双有源桥式变换器具有两个DC-AC变换器通过交流电感/变压器背靠背连接,是用于获得高效率双向功率转换的常见拓扑结构。DAB变换器拓扑结构具有双向潮流能力、固有软开关、高功率密度、高效率、电流隔离和无源器件数量少等特点。本文讨论了负载阶跃变化时的电路运行、设计、效率、开关应力和闭环运行的比较。比较了两种常用的控制策略,即单相移相和扩展移相,并给出了各自的波形图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative analysis of dual active bridge isolated DC to DC converter with single phase shift and extended phase shift control techniques
Bidirectional energy transfer capability is the central part of a lot of modern power conversion systems. Preferably, for reduction of size, weight and cost these systems use a single high efficiency power electronic conversion system. A dual active bridge converter having two DC-AC converters connected back to back through an AC inductor/transformer is a common topology used for obtaining high efficiency bidirectional power conversion. Some characteristic features of the DAB converter topology are bidirectional power flow capability, inherent soft switching, high power density, high efficiency, galvanic isolation and low number of passive components. In this paper, circuit operation, design, and comparison of efficiency, switch stress, and closed loop operation for step load variation are discussed. Two common control strategies namely single phase shift, and extended phase shift are compared and respective waveforms are shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Solar PV fed standalone DC microgrid with hybrid energy storage system Control-oriented parametrized models for microbial fuel cells Wind resource assessment and energy analysis for wind energy projects Per phase power balancing in grid connected cascaded H-bridge multilevel converter for solar PV application Modified soft-switching scheme for charge-pump based IDB converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1