多模态词义消歧的概率集成融合

Yang Peng, D. Wang, Ishan Patwa, Dihong Gong, C. Fang
{"title":"多模态词义消歧的概率集成融合","authors":"Yang Peng, D. Wang, Ishan Patwa, Dihong Gong, C. Fang","doi":"10.1109/ISM.2015.35","DOIUrl":null,"url":null,"abstract":"With the advent of abundant multimedia data on the Internet, there have been research efforts on multimodal machine learning to utilize data from different modalities. Current approaches mostly focus on developing models to fuse low-level features from multiple modalities and learn unified representation from different modalities. But most related work failed to justify why we should use multimodal data and multimodal fusion, and few of them leveraged the complementary relation among different modalities. In this paper, we first identify the correlative and complementary relations among multiple modalities. Then we propose a probabilistic ensemble fusion model to capture the complementary relation between two modalities (images and text). Experimental results on the UIUC-ISD dataset show our ensemble approach outperforms approaches using only single modality. Word sense disambiguation (WSD) is the use case we studied to demonstrate the effectiveness of our probabilistic ensemble fusion model.","PeriodicalId":250353,"journal":{"name":"2015 IEEE International Symposium on Multimedia (ISM)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Probabilistic Ensemble Fusion for Multimodal Word Sense Disambiguation\",\"authors\":\"Yang Peng, D. Wang, Ishan Patwa, Dihong Gong, C. Fang\",\"doi\":\"10.1109/ISM.2015.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of abundant multimedia data on the Internet, there have been research efforts on multimodal machine learning to utilize data from different modalities. Current approaches mostly focus on developing models to fuse low-level features from multiple modalities and learn unified representation from different modalities. But most related work failed to justify why we should use multimodal data and multimodal fusion, and few of them leveraged the complementary relation among different modalities. In this paper, we first identify the correlative and complementary relations among multiple modalities. Then we propose a probabilistic ensemble fusion model to capture the complementary relation between two modalities (images and text). Experimental results on the UIUC-ISD dataset show our ensemble approach outperforms approaches using only single modality. Word sense disambiguation (WSD) is the use case we studied to demonstrate the effectiveness of our probabilistic ensemble fusion model.\",\"PeriodicalId\":250353,\"journal\":{\"name\":\"2015 IEEE International Symposium on Multimedia (ISM)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Multimedia (ISM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2015.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2015.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

随着互联网上丰富的多媒体数据的出现,多模态机器学习已经成为利用不同模态数据的研究热点。目前的方法主要集中在开发模型来融合来自多个模态的底层特征,并从不同的模态中学习统一的表示。但大多数相关工作未能证明为什么我们应该使用多模态数据和多模态融合,很少利用不同模态之间的互补关系。在本文中,我们首先确定了多模态之间的相关和互补关系。然后,我们提出了一个概率集成融合模型来捕获两种模式(图像和文本)之间的互补关系。在UIUC-ISD数据集上的实验结果表明,我们的集成方法优于仅使用单一模态的方法。词义消歧(WSD)是我们研究的用例,以证明我们的概率集成融合模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic Ensemble Fusion for Multimodal Word Sense Disambiguation
With the advent of abundant multimedia data on the Internet, there have been research efforts on multimodal machine learning to utilize data from different modalities. Current approaches mostly focus on developing models to fuse low-level features from multiple modalities and learn unified representation from different modalities. But most related work failed to justify why we should use multimodal data and multimodal fusion, and few of them leveraged the complementary relation among different modalities. In this paper, we first identify the correlative and complementary relations among multiple modalities. Then we propose a probabilistic ensemble fusion model to capture the complementary relation between two modalities (images and text). Experimental results on the UIUC-ISD dataset show our ensemble approach outperforms approaches using only single modality. Word sense disambiguation (WSD) is the use case we studied to demonstrate the effectiveness of our probabilistic ensemble fusion model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of the HEVC Coding Efficiency Advance Using 20 Scenes, ITU-T Rec. P.913 Compliant Subjective Methods, VQM, and PSNR Modelling Video Rate Evolution in Adaptive Bitrate Selection SDN Based QoE Optimization for HTTP-Based Adaptive Video Streaming Evaluation of Feature Detection in HDR Based Imaging Under Changes in Illumination Conditions Collaborative Rehabilitation Support System: A Comprehensive Solution for Everyday Rehab
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1