热传递系数概念的推广

S. Mohamed-Nabil, S. Ossama
{"title":"热传递系数概念的推广","authors":"S. Mohamed-Nabil, S. Ossama","doi":"10.1109/THETA.2008.5188777","DOIUrl":null,"url":null,"abstract":"The convection heat transfer coefficient h is a concept that is heavily used by all thermal engineers to solve practical problems. It allows them to approximately analyze complicated systems, without having to systematically perform detailed 3D simulations of all parts of any real system, which is always highly complicated. At least in the first design phase, engineers would appreciate a `handy¿ approximation, like that of h, which belongs to a larger category of what is called compact models. However, defining and using this quantity h for system simulation suffers from fundamental and conceptual problems that will be elucidated in this paper. Experienced thermal engineers know how to use it judiciously avoiding thus these problems, almost unconsciously. However as systems become more and more complicated, in terms of the number of its elements, automated calculations are becoming the rule. Hence, a `black box¿ model of convection is needed for system level simulation and design, which would always give meaningful results in any situation. In this paper a solution is proposed based on the general theory of compact models, which has known recent breakthroughs leading to a general and rigorous theory. This theory has been applied so far for thermal modeling of conduction problems. It will be generalized here to convection problems. The result is a new concept that generalizes h such as to be able to correctly handle situations that were not adequately modeled before.","PeriodicalId":414963,"journal":{"name":"2008 Second International Conference on Thermal Issues in Emerging Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalization of the heat transfer coefficient concept\",\"authors\":\"S. Mohamed-Nabil, S. Ossama\",\"doi\":\"10.1109/THETA.2008.5188777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The convection heat transfer coefficient h is a concept that is heavily used by all thermal engineers to solve practical problems. It allows them to approximately analyze complicated systems, without having to systematically perform detailed 3D simulations of all parts of any real system, which is always highly complicated. At least in the first design phase, engineers would appreciate a `handy¿ approximation, like that of h, which belongs to a larger category of what is called compact models. However, defining and using this quantity h for system simulation suffers from fundamental and conceptual problems that will be elucidated in this paper. Experienced thermal engineers know how to use it judiciously avoiding thus these problems, almost unconsciously. However as systems become more and more complicated, in terms of the number of its elements, automated calculations are becoming the rule. Hence, a `black box¿ model of convection is needed for system level simulation and design, which would always give meaningful results in any situation. In this paper a solution is proposed based on the general theory of compact models, which has known recent breakthroughs leading to a general and rigorous theory. This theory has been applied so far for thermal modeling of conduction problems. It will be generalized here to convection problems. The result is a new concept that generalizes h such as to be able to correctly handle situations that were not adequately modeled before.\",\"PeriodicalId\":414963,\"journal\":{\"name\":\"2008 Second International Conference on Thermal Issues in Emerging Technologies\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Second International Conference on Thermal Issues in Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/THETA.2008.5188777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Thermal Issues in Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THETA.2008.5188777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对流换热系数h是所有热工程师在解决实际问题时大量使用的一个概念。它允许他们大致分析复杂的系统,而不必系统地执行任何真实系统的所有部分的详细3D模拟,这总是非常复杂的。至少在第一个设计阶段,工程师们会喜欢一个“方便”的近似,比如h,它属于一个更大的类别,被称为紧凑型模型。然而,在系统仿真中定义和使用这个量h会遇到一些基本的和概念上的问题,这些问题将在本文中加以阐明。经验丰富的热工程师知道如何明智地使用它,几乎无意识地避免这些问题。然而,随着系统变得越来越复杂,就其元素的数量而言,自动计算正在成为规则。因此,系统级模拟和设计需要对流的“黑箱”模型,它在任何情况下都能给出有意义的结果。本文提出了一种基于紧模型一般理论的解决方案,该理论最近取得了一些突破,导致了一个普遍而严谨的理论。这一理论迄今已应用于传导问题的热建模。这里将推广到对流问题。其结果是一个概括了h的新概念,例如能够正确处理以前没有充分建模的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalization of the heat transfer coefficient concept
The convection heat transfer coefficient h is a concept that is heavily used by all thermal engineers to solve practical problems. It allows them to approximately analyze complicated systems, without having to systematically perform detailed 3D simulations of all parts of any real system, which is always highly complicated. At least in the first design phase, engineers would appreciate a `handy¿ approximation, like that of h, which belongs to a larger category of what is called compact models. However, defining and using this quantity h for system simulation suffers from fundamental and conceptual problems that will be elucidated in this paper. Experienced thermal engineers know how to use it judiciously avoiding thus these problems, almost unconsciously. However as systems become more and more complicated, in terms of the number of its elements, automated calculations are becoming the rule. Hence, a `black box¿ model of convection is needed for system level simulation and design, which would always give meaningful results in any situation. In this paper a solution is proposed based on the general theory of compact models, which has known recent breakthroughs leading to a general and rigorous theory. This theory has been applied so far for thermal modeling of conduction problems. It will be generalized here to convection problems. The result is a new concept that generalizes h such as to be able to correctly handle situations that were not adequately modeled before.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microscale transprot in the thermal processing of new and emerging advanced materials Calculation of local heat transfer coefficient on axisymmetric geometries using different methods of fringe analysis EXperimental study of convective heat transfer and pressure loss of SiO2/water nanofluids Part 2: Imposed uniform heat flux - Energetic performance criterion Air flow regimes and IAQ modeling in air conditioned spaces Analytical simulation of rich hydrogen gas - Air Proton Exchange Membrane Fuel Cell system fueled by natural gas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1