广义链路层优化:应用和性能评估

V. Rodriguez
{"title":"广义链路层优化:应用和性能评估","authors":"V. Rodriguez","doi":"10.1109/IWCLD.2011.6123087","DOIUrl":null,"url":null,"abstract":"A wireless communication system work more efficiently if link-layer parameters such as modulation order, symbol rate and packet size are (adaptively) optimised. A common criterion is to maximise spectral efficiency subject to a very low bit-error constraint. But for systems equipped with strong error detection and a selective packet re-transmission mechanism, a packet-oriented criterion is more appropriate. Recently we showed that the link configuration that maximises bits per second or bits per Joule can be identified by drawing a tangent from the origin to the scaled graphs of the corresponding packet-success rate functions: the steeper the tangent the better the configuration. We now consider a tight symbol-rate constraint that forces the terminal to switch its configuration from the ideal as channel quality improves, and report on analytically-grounded performance experiments. A terminal with a flexible and unconstrained symbol rate enjoys a growing and overwhelming performance advantage over a similarly-endowed fixed-rate adaptive terminal. And the rate-flexible terminal retains a significant performance edge (up to 2-to-1) even when its symbol rate cannot exceed that of the fixed-rate terminal.","PeriodicalId":149596,"journal":{"name":"2011 Third International Workshop on Cross Layer Design","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generalised link-layer optimisation: Application and performance evaluation\",\"authors\":\"V. Rodriguez\",\"doi\":\"10.1109/IWCLD.2011.6123087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wireless communication system work more efficiently if link-layer parameters such as modulation order, symbol rate and packet size are (adaptively) optimised. A common criterion is to maximise spectral efficiency subject to a very low bit-error constraint. But for systems equipped with strong error detection and a selective packet re-transmission mechanism, a packet-oriented criterion is more appropriate. Recently we showed that the link configuration that maximises bits per second or bits per Joule can be identified by drawing a tangent from the origin to the scaled graphs of the corresponding packet-success rate functions: the steeper the tangent the better the configuration. We now consider a tight symbol-rate constraint that forces the terminal to switch its configuration from the ideal as channel quality improves, and report on analytically-grounded performance experiments. A terminal with a flexible and unconstrained symbol rate enjoys a growing and overwhelming performance advantage over a similarly-endowed fixed-rate adaptive terminal. And the rate-flexible terminal retains a significant performance edge (up to 2-to-1) even when its symbol rate cannot exceed that of the fixed-rate terminal.\",\"PeriodicalId\":149596,\"journal\":{\"name\":\"2011 Third International Workshop on Cross Layer Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Third International Workshop on Cross Layer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCLD.2011.6123087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Third International Workshop on Cross Layer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCLD.2011.6123087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

如果调制顺序、符号速率和分组大小等链路层参数(自适应)得到优化,无线通信系统的工作效率会更高。一个常见的标准是在非常低的误码约束下最大化频谱效率。但对于具有强错误检测和选择性分组重传机制的系统,面向分组的准则更为合适。最近,我们展示了最大化每秒比特数或每焦耳比特数的链路配置可以通过从原点到相应数据包成功率函数的缩放图绘制切线来识别:切线越陡,配置越好。我们现在考虑一个严格的符号速率约束,它迫使终端在信道质量提高时从理想配置切换其配置,并报告分析接地性能实验。具有灵活和不受约束的符号速率的终端比具有类似特性的固定速率自适应终端具有越来越大的性能优势。并且,即使当其符号速率不能超过固定速率终端时,速率灵活终端仍保持显著的性能优势(高达2比1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalised link-layer optimisation: Application and performance evaluation
A wireless communication system work more efficiently if link-layer parameters such as modulation order, symbol rate and packet size are (adaptively) optimised. A common criterion is to maximise spectral efficiency subject to a very low bit-error constraint. But for systems equipped with strong error detection and a selective packet re-transmission mechanism, a packet-oriented criterion is more appropriate. Recently we showed that the link configuration that maximises bits per second or bits per Joule can be identified by drawing a tangent from the origin to the scaled graphs of the corresponding packet-success rate functions: the steeper the tangent the better the configuration. We now consider a tight symbol-rate constraint that forces the terminal to switch its configuration from the ideal as channel quality improves, and report on analytically-grounded performance experiments. A terminal with a flexible and unconstrained symbol rate enjoys a growing and overwhelming performance advantage over a similarly-endowed fixed-rate adaptive terminal. And the rate-flexible terminal retains a significant performance edge (up to 2-to-1) even when its symbol rate cannot exceed that of the fixed-rate terminal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time-frequency resource allocation optimization model for OFDMA systems Distributed coding for OFDM-based transmission in cooperative broadcast networks Traffic-aware adaptive wake-up-interval for preamble sampling MAC protocols of WSN Cross-layer mechanism for efficient video transmission over mobile ad hoc networks Throughput maximizing transmission strategy of energy harvesting nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1